1
|
Olowookere FV, Turner CH. Predicting Gaseous Solute Diffusion in Viscous Multivalent Ionic Liquid Solvents. J Phys Chem B 2023; 127:9144-9154. [PMID: 37831616 DOI: 10.1021/acs.jpcb.3c03858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Calculating solute diffusion in dense, viscous solvents can be particularly challenging in molecular dynamics simulations due to the long time scales involved. Here, a new scaling approach is developed for predicting solute diffusion based on analyses of CO2 and SO2 diffusion in two different multivalent ionic liquid solvents. Various scaling approaches are initially evaluated, including single and separate thermostats for the solute and solvent, as well as the application of the Arrhenius relationship and the Speedy-Angell power law. A very strong logarithmic correlation is established between the solvent-accessible surface area and solute diffusion. This relationship, reflecting Danckwerts' surface renewal theory and the Vrentas-Duda free volume model, presents a valuable method for estimating diffusion behavior from short simulation trajectories at elevated temperatures. The approach may be beneficial for enhancing predictive modeling in similar challenging systems and should be more broadly evaluated.
Collapse
Affiliation(s)
- Feranmi V Olowookere
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
| | - C Heath Turner
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487-0203, United States
| |
Collapse
|
2
|
Boiko DA, Kashin AS, Sorokin VR, Agaev YV, Zaytsev RG, Ananikov VP. Analyzing ionic liquid systems using real-time electron microscopy and a computational framework combining deep learning and classic computer vision techniques. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Morris DC, Prescott SW, Harper JB. Rapid relaxation NMR measurements to predict rate coefficients in ionic liquid mixtures. An examination of reaction outcome changes in a homologous series of ionic liquids. Phys Chem Chem Phys 2021; 23:9878-9888. [PMID: 33908419 DOI: 10.1039/d0cp06066f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of ionic liquids based on the 1-alkyl-3-methylimidazolium cations were examined as components of the solvent mixture for a bimolecular substitution process. The effects on both the rate coefficient of the process and the NMR spin-spin relaxation of the solvent components of changing either the alkyl chain length or the amount of ionic liquid in the reaction mixture were determined. At a constant mole fraction, a shorter alkyl chain length resulted in a greater rate coefficient enhancement and a longer relaxation time, with the opposite effects for a longer alkyl chain length. For a given ionic liquid, increasing the proportion of salt in the reaction mixture resulted in a greater rate coefficient and a shorter relaxation time. The microscopic origins of the rate coefficient enhancement were determined and a step change found in the activation parameters on increasing the alkyl chain length from hexyl to octyl, suggesting notable structuring in solution. Across a range of ionic liquids and solvent compositions, the relaxation time from NMR measurements was shown to relate to the reaction rate coefficient. The approach of using fast and simple NMR relaxation measurements to predict reaction outcomes was exemplified using a morpholinium-based ionic liquid.
Collapse
Affiliation(s)
- Daniel C Morris
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
4
|
Abstract
The extent to which cations and anions in ionic liquids (ILs) and ionic liquid solutions are dissociated is of both fundamental scientific interest and practical importance because ion dissociation has been shown to impact viscosity, density, surface tension, volatility, solubility, chemical reactivity, and many other important chemical and physical properties. When mixed with solvents, ionic liquids provide the unique opportunity to investigate ion dissociation from infinite dilution in the solvent to a completely solvent-free state, even at ambient conditions. The most common way to estimate ion dissociation in ILs and IL solutions is by comparing the molar conductivity determined from ionic conductivity measurements such as electrochemical impedance spectroscopy (EIS) (which measure the movement of only the charged, i.e., dissociated, ions) with the molar conductivity calculated from ion diffusivities measured by pulse field gradient nuclear magnetic resonance spectroscopy (PFG-NMR, which gives movement of all of the ions). Because the NMR measurements are time-consuming, the number of ILs and IL solutions investigated by this method is relatively limited. We have shown that use of the Stokes-Einstein equation with estimates of the effective ion Stokes radii allows ion dissociation to be calculated from easily measured density, viscosity, and ionic conductivity data (ρ, η, λ), which is readily available in the literature for a much larger number of pure ILs and IL solutions. Therefore, in this review, we present values of ion dissociation for ILs and IL solutions (aqueous and nonaqueous) determined by both the traditional molar conductivity/PFG-NMR method and the ρ, η, λ method. We explore the effect of cation and anion alkyl chain length, structure, and interaction motifs of the cation and anion, temperature, and the strength of the solvent in IL solutions.
Collapse
Affiliation(s)
- Oscar Nordness
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joan F Brennecke
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Munteshari O, Borenstein A, DeBlock RH, Lau J, Whang G, Zhou Y, Likitchatchawankun A, Kaner RB, Dunn B, Pilon L. In Operando Calorimetric Measurements for Activated Carbon Electrodes in Ionic Liquid Electrolytes under Large Potential Windows. CHEMSUSCHEM 2020; 13:1013-1026. [PMID: 31808623 DOI: 10.1002/cssc.201903011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/04/2019] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the effect of the potential window on heat generation in carbon-based electrical double layer capacitors (EDLCs) with ionic-liquid (IL)-based electrolytes using in operando calorimetry. The EDLCs consisted of two identical activated-carbon electrodes with either neat 1-butyl-1-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide ([Pyr14 ][TFSI]) electrolyte or 1.0 m [Pyr14 ][TFSI] in propylene carbonate (PC) as electrolyte. The instantaneous heat generation rate at each electrode was measured under galvanostatic cycling for different potential windows ranging from 1 to 4 V. First, the heat generation rates at the positive and negative electrodes differed significantly in neat IL owing to the differences in the ion sizes and diffusion coefficients. However, these differences were minimized when the IL was diluted in PC. Second, for EDLC in neat [Pyr14 ][TFSI] at high potential window (4 V), a pronounced endothermic peak was observed at the beginning of the charging step at the positive electrode owing to TFSI- intercalation in the activated carbon. On the other hand, for EDLC in 1.0 m [Pyr14 ][TFSI] in PC at potential window above 3 V, an endothermic peak was observed only at the negative electrode owing to the decomposition of PC. Third, for both neat and diluted [Pyr14 ][TFSI] electrolytes, the irreversible heat generation rate increased with increasing potential window and exceeded Joule heating. This was attributed to the effect of potential-dependent charge redistribution resistance. A further increase in the irreversible heat generation rate was observed for the largest potential windows owing to the degradation of the PC solvent. Finally, for both types of electrolyte, the reversible heat generation rate increased with increasing potential window because of the increase in the amount of ion adsorbed/desorbed at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Obaidallah Munteshari
- Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
- Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Arie Borenstein
- Chemistry Department, Ariel University, Ariel, Israel
- Chemistry and Biochemistry Department, University of California, Los Angeles, California, 90095, USA
| | - Ryan H DeBlock
- Materials Science and Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Jonathan Lau
- Materials Science and Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Grace Whang
- Materials Science and Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Yucheng Zhou
- Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Ampol Likitchatchawankun
- Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Chemistry and Biochemistry Department, University of California, Los Angeles, California, 90095, USA
- Materials Science and Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Bruce Dunn
- Materials Science and Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Laurent Pilon
- Mechanical and Aerospace Engineering Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Schaffarczyk McHale KS, Haines RS, Harper JB. Ionic Liquids as Solvents for S N 2 Processes. Demonstration of the Complex Interplay of Interactions Resulting in the Observed Solvent Effects. Chempluschem 2020; 83:1162-1168. [PMID: 31950706 DOI: 10.1002/cplu.201800510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/03/2018] [Indexed: 11/11/2022]
Abstract
Bimolecular nucleophilic substitution reactions between triphenylphosphine and benzylic electrophiles have been examined in an ionic liquid to probe interactions with species along the reaction coordinate. Trends in the rate constant were found on both varying the leaving group and the electronic nature of the aromatic ring. In all the cases considered, interactions between the components of the ionic liquid and the transition state were shown to be more significant in determining reaction outcome than previously observed for this class of reaction. This demonstrates the importance of considering interactions of the ionic liquid components with all species along the reaction coordinate when investigating the origin of ionic liquid solvent effects, along with how such effects might be exploited.
Collapse
Affiliation(s)
| | - Ronald S Haines
- School of Chemistry, University of New South Wales UNSW, Sydney, NSW 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Schindl A, Hawker RR, Schaffarczyk McHale KS, Liu KTC, Morris DC, Hsieh AY, Gilbert A, Prescott SW, Haines RS, Croft AK, Harper JB, Jäger CM. Controlling the outcome of S N2 reactions in ionic liquids: from rational data set design to predictive linear regression models. Phys Chem Chem Phys 2020; 22:23009-23018. [PMID: 33043942 DOI: 10.1039/d0cp04224b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular electrostatic potential). Simple linear regression models proved effective, though the interdependency of the descriptors needs to be taken into account when considering generality. A series of ionic liquids were then prepared and evaluated as solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic variation) and functionalities not available in the original data set. These new data were used to evaluate and refine the original models, which were expanded to include simple artificial neural networks. Along with showing the importance of an appropriate data set and the perils of overfitting, the work demonstrates that such models can be used to reliably predict ionic liquid solvent effects on an organic process, within the limits of the data set.
Collapse
Affiliation(s)
- Alexandra Schindl
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Rebecca R Hawker
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | | | - Kenny T-C Liu
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Daniel C Morris
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia. and School of Chemical Engineering, University of New South Wales, UNSW Sydney, 2052, Australia
| | - Andrew Y Hsieh
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Alyssa Gilbert
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, 2052, Australia
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Bystrov SS, Matveev VV, Egorov AV, Chernyshev YS, Konovalov VA, Balevičius V, Chizhik VI. Translational Diffusion in a Set of Imidazolium-Based Ionic Liquids [bmim] +A - and Their Mixtures with Water. J Phys Chem B 2019; 123:9187-9197. [PMID: 31591890 DOI: 10.1021/acs.jpcb.9b06802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the development of the work (J. Phys. Chem. B 2019, 123 (10), 2362-2372), we have investigated the translational mobility in the same set of dried imidazolium-based ionic liquids (ILs) [bmim]A (A = BF4-, NO3-, TfO-, I-, Br-, and Cl-) in a wide temperature range using the NMR technique. It is shown that for the [bmim]+ cation, the temperature dependencies of product Dη do not follow the Stokes-Einstein relation for most systems studied, that is, the so-called "diffusion-viscosity decoupling" was realized. The correlation between local and translational mobility in pure IL of the [bmim][A] type was investigated using the data on NMR relaxation rates and diffusion coefficients. The most recent hypothesis of "water pockets" in mixtures of IL with water is critically discussed. Considering the totality of data in the literature and obtained here, we propose a specific model of the microstructure which may be applied up to water concentrations of 80-90 mol % (the structure of water-rich solutions is out of our current consideration). To confirm the model, molecular dynamics simulations of "IL-water" mixtures were also carried out.
Collapse
Affiliation(s)
- Sergei S Bystrov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Vladimir V Matveev
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Andrei V Egorov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Yurii S Chernyshev
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | - Vladislav A Konovalov
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| | | | - Vladimir I Chizhik
- Saint-Petersburg State University , Ulyanovskaya str., 1 , 198504 Saint-Petersburg , Russia
| |
Collapse
|
9
|
Schaffarczyk McHale KS, Haines RS, Harper JB. The Dependence of Ionic Liquid Solvent Effects on the Nucleophilic Heteroatom in S N Ar Reactions. Highlighting the Potential for Control of Selectivity. Chempluschem 2019; 84:465-473. [PMID: 31943898 DOI: 10.1002/cplu.201900173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/09/2019] [Indexed: 11/11/2022]
Abstract
Nucleophilic aromatic substitution (SN Ar) reactions of 1-fluoro-4-nitrobenzene using similar nitrogen and sulfur nucleophiles were studied through extensive kinetic analysis in mixtures containing ionic liquids. The interactions of the ionic liquid components with the starting materials and transition state for each process were investigated in an attempt to construct a broad predictive framework for how ionic liquids affect reaction outcome. It was found that, based on the activation parameters, the microscopic interactions and thus the ionic liquid solvent effect were different for each of the nucleophiles considered. The results from this study suggest that it may be possible to rationally select a given ionic liquid mixture to selectively control reaction outcome of an SN Ar reaction where multiple nucleophiles are present.
Collapse
Affiliation(s)
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Keaveney ST, Harper JB, Croft AK. Ion-Reagent Interactions Contributing to Ionic Liquid Solvent Effects on a Condensation Reaction. Chemphyschem 2018; 19:3279-3287. [PMID: 30289579 DOI: 10.1002/cphc.201800695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/09/2022]
Abstract
Molecular dynamics simulations of solutions of hexan-1-amine or 4-methoxybenzaldehyde in acetonitrile, an ionic liquid/acetonitrile mixture (χIL =0.2), and a number of different (neat) ionic liquids were performed, to further understand the solvent effects on the condensation reaction of these species. This work indicates that, in the presence of an ionic liquid, the amine group of hexan-1-amine is exclusively solvated by the components of the ionic liquid, and not by acetonitrile, and that the anion interacts with the aldehyde group of 4-methoxybenzaldehyde. These interactions showed little dependence on the proportion of the ionic liquid present. When varying the cation of the ionic liquid there were changes in the cation-amine interaction, and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bm2 im][N(CF3 SO2 )2 ]) was found to order more than expected about the amine. This ordering is likely the origin of the large rate constant values determined in [Bm2 im][N(CF3 SO2 )2 ] for this condensation reaction and explains an anomaly seen previously. When changing the anion, changes were seen in the interactions between both the cation and anion with hexan-1-amine, and the anion with 4-methoxybenzaldehyde. The differing magnitude of these interactions likely causes subtle changes in the activation parameters for this condensation reaction, and provides an explanation for the anomalous rate constant values previously determined when varying the anion.
Collapse
Affiliation(s)
- Sinead T Keaveney
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
D'Agostino C, Mantle MD, Mullan CL, Hardacre C, Gladden LF. Diffusion, Ion Pairing and Aggregation in 1-Ethyl-3-Methylimidazolium-Based Ionic Liquids Studied by 1
H and 19
F PFG NMR: Effect of Temperature, Anion and Glucose Dissolution. Chemphyschem 2018; 19:1081-1088. [DOI: 10.1002/cphc.201701354] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Carmine D'Agostino
- Department of Chemical Engineering and Biotechnology; University of Cambridge, Philippa Fawcett Drive; West Cambridge Site Cambridge CB3 0AS UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill, Sackville Street Manchester M13 9PL UK
| | - Mick D. Mantle
- Department of Chemical Engineering and Biotechnology; University of Cambridge, Philippa Fawcett Drive; West Cambridge Site Cambridge CB3 0AS UK
| | - Claire L. Mullan
- School of Chemistry and Chemical Engineering; Queen's University Belfast; Belfast BT9 5AG UK
| | - Christopher Hardacre
- School of Chemistry and Chemical Engineering; Queen's University Belfast; Belfast BT9 5AG UK
- School of Chemical Engineering and Analytical Science; The University of Manchester; The Mill, Sackville Street Manchester M13 9PL UK
| | - Lynn F. Gladden
- Department of Chemical Engineering and Biotechnology; University of Cambridge, Philippa Fawcett Drive; West Cambridge Site Cambridge CB3 0AS UK
| |
Collapse
|
12
|
Butler BJ, Harper JB. The effect of the structure of the anion of an ionic liquid on the rate of reaction at a phosphorus centre. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bradley J. Butler
- School of Chemistry; University of New South Wales, UNSW; Sydney Australia
| | - Jason B. Harper
- School of Chemistry; University of New South Wales, UNSW; Sydney Australia
| |
Collapse
|
13
|
Hawker RR, Haines RS, Harper JB. Rational selection of the cation of an ionic liquid to control the reaction outcome of a substitution reaction. Chem Commun (Camb) 2018; 54:2296-2299. [DOI: 10.1039/c8cc00241j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational selection of ionic liquids to get the rate constant you want in a substitution process.
Collapse
Affiliation(s)
| | | | - Jason B. Harper
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
14
|
|
15
|
Andanson JM, Papaiconomou N, Cable PA, Traïkia M, Billard I, Husson P. The role of association of ions in ionic liquid/molecular solvent mixtures on metal extraction. Phys Chem Chem Phys 2017; 19:28834-28840. [DOI: 10.1039/c7cp05886a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platinum extraction from aqueous phase into ionic liquid can be correlated to ionic association.
Collapse
Affiliation(s)
- J.-M. Andanson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont–Ferrand
| | | | - P.-A. Cable
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont–Ferrand
| | - M. Traïkia
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont–Ferrand
| | - I. Billard
- Univ. Grenoble-Alpes
- LEPMI
- Grenoble
- France
- CNRS
| | - P. Husson
- Université Clermont Auvergne
- CNRS
- SIGMA Clermont
- Institut de Chimie de Clermont-Ferrand
- F-63000 Clermont–Ferrand
| |
Collapse
|
16
|
Keaveney ST, Greaves TL, Kennedy DF, Harper JB. Understanding the Effect of Solvent Structure on Organic Reaction Outcomes When Using Ionic Liquid/Acetonitrile Mixtures. J Phys Chem B 2016; 120:12687-12699. [PMID: 27973829 DOI: 10.1021/acs.jpcb.6b11090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate constant for the reaction between hexan-1-amine and 4-methoxybenzaldehyde was determined in ionic liquids containing an imidazolium cation. The effect on the rate constant of increasing the length of the alkyl substituent on the cation was examined in a number of ionic liquid/acetonitrile mixtures. In general it was found that there was no significant effect of changing the alkyl substituent on the rate constant of this process, suggesting that any nanodomains in these mixtures do not have a significant effect on the outcome of this process. A series of small-angle X-ray scattering and wide-angle X-ray scattering experiments were performed on mixtures of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim][N(CF3SO2)2]) and acetonitrile; this work indicated that the main structural changes in the mixtures occur by about a 0.2 mole fraction of ionic liquid in the mixture (χIL). This region at which the main changes in the solvent structuring occurs corresponds to the region at which the main changes in the rate constant and activation parameters occur for SN2 and condensation reactions examined previously; this is the first time that such a correlation has been observed. To examine the ordering of the solvent about the nucleophile hexan-1-amine, WAXS experiments were performed on a number of [Bmim][N(CF3SO2)2]/acetonitrile/hexan-1-amine mixtures, where it was found that some of the patterns featured asymmetric peaks as well as additional peaks not observed in the [Bmim][N(CF3SO2)2]/acetonitrile mixtures; this suggests that the addition of hexan-1-amine to the mixture affects the bulk structure of the liquid. The SAXS/WAXS patterns of mixtures of 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide ([Bm2im][N(CF3SO2)2]) and acetonitrile were also determined, with the results suggesting that [Bm2im][N(CF3SO2)2] is more ordered than [Bmim][N(CF3SO2)2] due to an enhancement in the short-range interactions.
Collapse
Affiliation(s)
- Sinead T Keaveney
- School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne, VIC 3001, Australia
| | | | - Jason B Harper
- School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| |
Collapse
|