1
|
Abstract
Regulatory processes in biology can be re-conceptualized in terms of logic gates, analogous to those in computer science. Frequently, biological systems need to respond to multiple, sometimes conflicting, inputs to provide the correct output. The language of logic gates can then be used to model complex signal transduction and metabolic processes. Advances in synthetic biology in turn can be used to construct new logic gates, which find a variety of biotechnology applications including in the production of high value chemicals, biosensing, and drug delivery. In this review, we focus on advances in the construction of logic gates that take advantage of biological catalysts, including both protein-based and nucleic acid-based enzymes. These catalyst-based biomolecular logic gates can read a variety of molecular inputs and provide chemical, optical, and electrical outputs, allowing them to interface with other types of biomolecular logic gates or even extend to inorganic systems. Continued advances in molecular modeling and engineering will facilitate the construction of new logic gates, further expanding the utility of biomolecular computing.
Collapse
|
2
|
Kaniewska K, Bollella P, Katz E. Implication and Inhibition Boolean Logic Gates Mimicked with Enzyme Reactions. Chemphyschem 2020; 21:2150-2154. [DOI: 10.1002/cphc.202000653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/14/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Klaudia Kaniewska
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
- Faculty of Chemistry Biological and Chemical Research Center University of Warsaw 101 Żwirki i Wigury Av. 02-089 Warsaw Poland
| | - Paolo Bollella
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699 USA
| |
Collapse
|
3
|
Katz E. Boolean Logic Gates Realized with Enzyme‐catalyzed Reactions – Unusual Look at Usual Chemical Reactions. Chemphyschem 2018; 20:9-22. [DOI: 10.1002/cphc.201800900] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University Potsdam NY 13699–5810 USA
| |
Collapse
|
4
|
Filipov Y, Gamella M, Katz E. Nano-species Release System Activated by Enzyme-based XOR Logic Gate. ELECTROANAL 2017. [DOI: 10.1002/elan.201700742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yaroslav Filipov
- Department of Chemistry and Biomolecular Science
- Department of Physics; Clarkson University; Potsdam, NY 13699 USA
| | | | - Evgeny Katz
- Department of Chemistry and Biomolecular Science
| |
Collapse
|