1
|
Li W, Li F, Zhang X, Wu J, Yang G. Metallic Re 3O 2 with mixed-valence states. Phys Chem Chem Phys 2024; 26:13300-13305. [PMID: 38639135 DOI: 10.1039/d4cp00973h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Rhenium (Re) shows the richest valence states from +2 to +7 in compounds, but its mixed-valence states are still missing thus far. In this work, we have explored the Re-O phase diagram with a wide range of stoichiometric compositions under high pressure through first-principles structural search calculations. Besides identifying two novel high-pressure phases of ReO2 and ReO3, we reveal two hitherto unknown Re-rich Re3O2 and O-rich ReO4 compounds. Re atoms in Re3O2 show mixed-valence states due to their inequivalent coordination environments, the first example in Re-based compounds. Electronic structure calculations demonstrate that the four discovered Re-O phases exhibit metallicity contributed by Re 5d electrons. Among them, ReO3 has a predicted critical temperature of up to 12 K at 50 GPa, derived from the interaction between Re 5d electrons and Re-derived low-frequency phonons. Our study points to new opportunities to disclose novel transition metal compounds with mixed-valence states.
Collapse
Affiliation(s)
- Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Fei Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Jinhui Wu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China.
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Gao Y, Li S, Zeng XC, Wu M. Exploitation of mixed-valency chemistry for designing a monolayer with double ferroelectricity and triferroic couplings. NANOSCALE 2023; 15:13567-13573. [PMID: 37565465 DOI: 10.1039/d3nr02216a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Mixed-valence compounds possess both intriguing chemical and physical properties such as the intervalence charge transfer band and thus have been excellent model systems for the investigation of fundamental electron- and charge-transfer phenomena. Herein, we show that valence stratification can be a source of symmetry breaking and generating ferroelectricity in two-dimensional (2D) materials. We present ab initio computation evidence of the monolayer Cu2Cl3 structure with Cu ions being stratified into two separated layers of Cu(I) and Cu(II). Chemically, this unique monolayer not only entails lower formation energy than the bulk CuCl + CuCl2, but also enables the swapping of two valences through vertical ferroelectric switching, leading to a hitherto unreported chemical valencing phenomenon. Notably, the Jahn-Teller distortion of the Cu(II) layer results in another source of symmetry breaking and thus in-plane ferroelectricity. Apart from the valence swapping and self-contained double ferroelectricity, the monolayer's ferroelasticity is also coupled with in-plane ferroelectricity, while the monolayer's ferromagnetism is coupled with vertical polarization owing to the distinct magnetization of each Cu(I) and Cu(II) layer, thereby evoking the long-sought 2D triferroicity as well as triferroic couplings.
Collapse
Affiliation(s)
- Yaxin Gao
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Li
- School of Physics and Mechanical Electrical & Engineering, Institute of Theoretical Physics, Hubei University of Education, Wuhan, Hubei 430205, China.
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
| | - Menghao Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
3
|
Abstract
The achievement of new bonding patterns of atoms in compounds is of great importance, which usually induces interesting physical and chemical properties. Rich oxidation states, diverse bonding types, and unique aurophilic attraction endow gold (Au) as a distinctive element. Here we report that a pressure-induced Li5AuP2, identified by a swarm intelligence-based structural prediction, becomes the first example of Au with sp3 hybridization. The most remarkable feature of Li5AuP2 is that it contains various frameworks made by AuP4, AuLi4, LiP4, and blende-like Li-P units, exhibiting noncentrosymmetry. The charge transfer from Li to Au makes Au 6p orbitals activate and hybridize with the 6s one. On the other hand, Li donating electrons to P and polar Au-P covalence make the constituent atoms satisfy the octet rule, rendering Li5AuP2 with a semiconducting character and a large second-order nonlinear optical response in the near-infrared region. Our work represents a significant step toward extending the understanding of gold chemistry.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xin Du
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yadong Wei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zeng Yang
- High School Attached to Northeast Normal University, Changchun 130024, China
| | - Xing Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Kurzydłowski D, Kobyakov S, Mazej Z, Pillai SB, Chakraborty B, Jha PK. Unexpected persistence of cis-bridged chains in compressed AuF 3. Chem Commun (Camb) 2020; 56:4902-4905. [PMID: 32239024 DOI: 10.1039/d0cc01374a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman scattering measurements indicate that cis-bridged chains are retained in AuF3 even at a compression of 45 GPa - in contrast to meta-GGA calculations suggesting that structures with such motifs are thermodynamically unstable above 4 GPa. This metastability implies that novel gold fluorides (e.g. AuF2) might be attainable at lower pressures than previously proposed.
Collapse
Affiliation(s)
- Dominik Kurzydłowski
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, ul. Wóycickiego 1/3, Warsaw 01-938, Poland. and Centre of New Technologies, University of Warsaw, ul. Banacha 2c, Warsaw 02-097, Poland
| | - Serhiy Kobyakov
- Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University, ul. Wóycickiego 1/3, Warsaw 01-938, Poland.
| | - Zoran Mazej
- Department of Inorganic Chemistry and Technology, JoŽef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Sharad Babu Pillai
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| |
Collapse
|
5
|
Zhang J, Feng X, Liu G, Redfern SAT, Liu H. Computational prediction of a +4 oxidation state in Au via compressed AuO 2 compound. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:015402. [PMID: 31505475 DOI: 10.1088/1361-648x/ab4325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Much effort has been devoted to the investigation of the physical and chemical properties of the Au-O system over a range of pressures, owing to the considerable importance of these materials in fundamental and practical applications. To date, however, only Au1+, Au2+, Au3+, and Au5+ oxidation states have been identified in the Au-O system, but tetravalent Au4+ has not been found. Here, we report the results of structure prediction for the Au-O system at high pressure via the effective structure prediction methodology within a first-principles electronic structure framework. We have uncovered an intriguing structure with AuO2 composition and tetravalent Au, stable at high pressures. This phase shows an electronic transition from a metal to a semiconducting phase as a function of pressure. The present results provide fundamental understanding of the structural and physicochemical properties of compressed Au-O compounds.
Collapse
Affiliation(s)
- Jurong Zhang
- State Key Laboratory for Superhard Materials and Innovation Center of Computational Physics Methods and Software, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | | | | | | | | |
Collapse
|
6
|
Tchaplyguine M, Zhang C, Andersson T, Björneholm O. Ag-Cu oxide nanoparticles with high oxidation states: towards new high T c materials. Dalton Trans 2018; 47:16660-16667. [PMID: 30426128 DOI: 10.1039/c8dt04118k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In Ag-Cu oxides possible to fabricate so far, superconductivity has not been detected, but high conductivity was. In the quest for superconductivity the demand is to create a high and peculiar copper-oxygen coordination. Such coordination makes it non-trivial to determine Cu oxidation states, which may be several and co-existing. Another reason for uncertainty is in oxygen deficiency typical for superconducting crystals. Finally, Cu oxidation is influenced by the other metals in the substance. For chemical fabrication the difficulty is to tune the relative abundances of elements in a fine way. Ag-Cu oxides have been also produced by reactive co-sputtering of Cu and Ag, but the composition with high Cu oxidation states necessary for high conductivity has not been realized. In the present work we have fabricated Ag-Cu-oxide nanoparticles containing Cu and Ag in high oxidation states actual for superconductivity. The fabrication includes reactive sputtering of Ag and Cu metals, their vapour oxidation and aggregation into nanoparticles. The ability to create different and high oxidation states, also co-existing, is demonstrated. The fabrication approach also allows overcoming the poor miscibility of Cu and Ag. The nanoparticle composition and the oxidation states could be determined due to an experimental arrangement in which photoelectron spectroscopy is applied to free nanoparticles in a beam in vacuum, what allows avoiding any contact of the particles to a substrate or atmosphere. The combination of the fabrication and characterization methods has proven to be a powerful approach when fine composition tuning and control are desirable.
Collapse
|