1
|
King J, Lin Z, Zanca F, Luo H, Zhang L, Cullen P, Danaie M, Hirscher M, Meloni S, Elena AM, Szilágyi PÁ. Controlling nanocluster growth through nanoconfinement: the effect of the number and nature of metal-organic framework functionalities. Phys Chem Chem Phys 2024; 26:25021-25028. [PMID: 39301657 DOI: 10.1039/d4cp02422b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Controlled nanocluster growth via nanoconfinement is an attractive approach as it allows for geometry control and potential surface-chemistry modification simultaneously. However, it is still not a straight-forward method and much of its success depends on the nature and possibly concentration of functionalities on the cavity walls that surround the clusters. To independently probe the effect of the nature and number of functional groups on the controlled Pd nanocluster growth within the pores of the metal-organic frameworks, Pd-laden UiO-66 analogues with mono- and bi-functionalised linkers of amino and methyl groups were successfully prepared and studied in a combined experimental-computational approach. The nature of the functional groups determines the strength of host-guest interactions, while the number of functional groups affects the extent of Pd loading. The interplay of these two effects means that for a successful Pd embedding, mono-functionalised host matrices are more favourable. Interestingly, in the context of the present and previous research, we find that host frameworks with functional groups displaying higher Lewis basicity are more successful at controlled Pd NC growth via nanoconfinement in MOFs.
Collapse
Affiliation(s)
- James King
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Zhipeng Lin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Federica Zanca
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Linda Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Patrick Cullen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Mohsen Danaie
- electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Didcot, OX11 0DE, UK
| | - Michael Hirscher
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Simone Meloni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Luigi Borsari 46, Ferrara 44121, Italy
| | - Alin M Elena
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Petra Á Szilágyi
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway.
| |
Collapse
|
2
|
Guerrero R, Lemir ID, Carrasco S, Fernández-Ruiz C, Kavak S, Pizarro P, Serrano DP, Bals S, Horcajada P, Pérez Y. Scaling-Up Microwave-Assisted Synthesis of Highly Defective Pd@UiO-66-NH 2 Catalysts for Selective Olefin Hydrogenation under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 38669483 PMCID: PMC11082845 DOI: 10.1021/acsami.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
The need to develop green and cost-effective industrial catalytic processes has led to growing interest in preparing more robust, efficient, and selective heterogeneous catalysts at a large scale. In this regard, microwave-assisted synthesis is a fast method for fabricating heterogeneous catalysts (including metal oxides, zeolites, metal-organic frameworks, and supported metal nanoparticles) with enhanced catalytic properties, enabling synthesis scale-up. Herein, the synthesis of nanosized UiO-66-NH2 was optimized via a microwave-assisted hydrothermal method to obtain defective matrices essential for the stabilization of metal nanoparticles, promoting catalytically active sites for hydrogenation reactions (760 kg·m-3·day-1 space time yield, STY). Then, this protocol was scaled up in a multimodal microwave reactor, reaching 86% yield (ca. 1 g, 1450 kg·m-3·day-1 STY) in only 30 min. Afterward, Pd nanoparticles were formed in situ decorating the nanoMOF by an effective and fast microwave-assisted hydrothermal method, resulting in the formation of Pd@UiO-66-NH2 composites. Both the localization and oxidation states of Pd nanoparticles (NPs) in the MOF were achieved using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively. The optimal composite, loaded with 1.7 wt % Pd, exhibited an extraordinary catalytic activity (>95% yield, 100% selectivity) under mild conditions (1 bar H2, 25 °C, 1 h reaction time), not only in the selective hydrogenation of a variety of single alkenes (1-hexene, 1-octene, 1-tridecene, cyclohexene, and tetraphenyl ethylene) but also in the conversion of a complex mixture of alkenes (i.e., 1-hexene, 1-tridecene, and anethole). The results showed a powerful interaction and synergy between the active phase (Pd NPs) and the catalytic porous scaffold (UiO-66-NH2), which are essential for the selectivity and recyclability.
Collapse
Affiliation(s)
- Raúl
M. Guerrero
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Ignacio D. Lemir
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Sergio Carrasco
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Carlos Fernández-Ruiz
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Safiyye Kavak
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Pizarro
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - David P. Serrano
- Thermochemical
Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- Chemical
and Environmental Engineering Group, Rey
Juan Carlos University, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| | - Sara Bals
- EMAT
and NANOlab Center of Excellence, University
of Antwerp, Groenenborgerlaan
171, Antwerp 2020, Belgium
| | - Patricia Horcajada
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
| | - Yolanda Pérez
- Advanced
Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra,
3, Móstoles 28935, Madrid, Spain
- COMET-NANO
Group, ESCET, Universidad Rey Juan Carlos, C/Tulipán, s/n, Móstoles 28933, Madrid, Spain
| |
Collapse
|
3
|
Pirsaheb M, Seifi H, Dawi EA, Gholami T, Salavati-Niasari M. CdAl 4O 7/CdO nanocomposites: green tea extract-mediated sol-gel auto-combustion synthesis, characterization, and study as a potential hydrogen storage material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21370-21379. [PMID: 38388980 DOI: 10.1007/s11356-024-32527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
In this article, we present the synthesis of binary CdAl4O7/CdO nanocomposites using green tea extracts and green chemistry methods for high-performance hydrogen storage. The green tea extract contains bioactive compounds (polyphenols) that act as reducing agents, which facilitate the reaction between metal ions and water. By examining the structural and morphological characteristics of the obtained substrates using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR), it was demonstrated that the nanocomposites were successfully synthesized. We evaluated the electrochemical performance of the synthesized CdAl4O7/CdO nanocomposites using a three-electrode chronopotentiometry system. According to the results, the synthesized nanocomposites are capable of storing 1750 mAh/g of hydrogen at a constant current of 1 Amp. By using green tea extract as a natural structure-directing agent, the CdAl4O7/CdO nanocomposite can be developed more sustainably as high-performance hydrogen storage materials. Ultimately, this work contributes to the advancement of sustainable energy storage through the synthesis of a promising new material.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hooman Seifi
- Department of Chemical Industries, Technical and Vocational University (TVU), Tehran, Iran
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics and Science, Ajman University, P.O. Box 346, Ajman, UAE
| | - Tahereh Gholami
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, P.O. Box 87317-51167, Kashan, Iran.
| |
Collapse
|
4
|
Comanescu C. Recent Development in Nanoconfined Hydrides for Energy Storage. Int J Mol Sci 2022; 23:7111. [PMID: 35806115 PMCID: PMC9267122 DOI: 10.3390/ijms23137111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers' attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinement. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning H2 production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.
Collapse
Affiliation(s)
- Cezar Comanescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1 Polizu St., 011061 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomiștilor 405, 077125 Magurele, Romania
| |
Collapse
|
5
|
Skitał PM, Domańska AJ. Modeling of the Simultaneous Hydrogen Evolution and Cobalt Electrodeposition. Chemphyschem 2022; 23:e202200148. [PMID: 35385185 DOI: 10.1002/cphc.202200148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/05/2022] [Indexed: 11/06/2022]
Abstract
A mathematical model of simultaneous cobalt deposition and hydrogen evolution was developed and applied to the electroreduction process of 5 mM Co 2+ ions investigated by cyclic voltammetry (CV) technique at different hydrogen ion concentrations (pH = 2, 3, 4). The kinetic parameters of such a complex process were determined, and the validity of the model and its sensitivity to changes in individual parameters were verified. The relative value of the approximate standard deviation (ASD % ) was used to determine the degree of fit of the model to the experimental data. The catalytic effect of cobalt on the hydrogen evolution process was comprehensively confirmed.
Collapse
Affiliation(s)
- Piotr M Skitał
- Rzeszow University of Technology: Politechnika Rzeszowska im Ignacego Lukasiewicza, Department of Inorganic and Analytical Chemistry, Al. Powstancow Warszawy 6, 35-959, Rzeszów, POLAND
| | - Aleksandra J Domańska
- Rzeszow University of Technology: Politechnika Rzeszowska im Ignacego Lukasiewicza, Department of Inorganic and Analytical Chemistry, POLAND
| |
Collapse
|
6
|
Liu ZX, Liu X, Li Y, Gao SQ. Accelerated Fe III/Fe II redox cycle of Fenton reaction system using Pd/NH 2-MIL-101(Cr) and hydrogen. Turk J Chem 2021; 45:377-386. [PMID: 34104042 PMCID: PMC8164194 DOI: 10.3906/kim-2008-34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/13/2020] [Indexed: 12/01/2022] Open
Abstract
In this paper, a novel improvement in the catalytic Fenton reaction system named MHACF-NH2-MIL-101(Cr) was constructed based on H2 and Pd/NH2-MIL-101(Cr). The improved system would result in an accelerated reduction in FeIII, and provide a continuous and fast degradation efficiency of the 10 mg L-1 4-chlorophenol which was the model contaminant by using only trace level FeII. The activity of Pd/NH2-MIL-101(Cr) decreased from 100% to about 35% gradually during the six consecutive reaction cycles of 18 h. That could be attributed to the irreversible structural damage of NH2-MIL-101(Cr).
Collapse
Affiliation(s)
- Zhong-Xing Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China.,Suzhou Mengli Environmental Technology Co., Ltd., Changshu National New & Hi-tech Industrial Development Zone Suzhou, Jiangsu Province China
| | - Yong Li
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| | - Shi-Qian Gao
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Tianping College of Suzhou University of Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu Province China
| |
Collapse
|
7
|
Agarwala P, Pati SK, Roy L. Unravelling the possibility of hydrogen storage on naphthalene dicarboxylate-based MOF linkers: a theoretical perspective. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1757169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Pratibha Agarwala
- Institute of Chemical Technology Mumbai – IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, India
| | - Saswat Kumar Pati
- Department of Chemistry, National Institute of Science Education and Research, Bhubaneswar, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai – IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar, India
| |
Collapse
|
8
|
Wu T, Liu X, Liu Y, Cheng M, Liu Z, Zeng G, Shao B, Liang Q, Zhang W, He Q, Zhang W. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213097] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|