1
|
Neog S, Dowerah D, Biswakarma N, Dutta P, Churi PP, Sarma PJ, Gour NK, Deka RC. Reaction Mechanism and Kinetics for the Selective Hydrogenation of Carbon Dioxide to Formic Acid and Methanol over the [Cu 2] 0,±1 Dimer. J Phys Chem A 2023; 127:8508-8529. [PMID: 37811794 DOI: 10.1021/acs.jpca.3c03609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
With the rapid growth of industrialization, deforestation, and burning of fossil fuels, undeniably there has been an incredible escalation of the CO2 concentration in the atmosphere. In order to mitigate the problem, the capture and utilization of CO2 in different value-added chemicals have thus remained topics of concerned research for more than a decade. Accordingly, we have performed molecular -level catalytic hydrogenation of CO2 to formic acid using bare [Cu2]0,±1 dimers as catalysts. The entire investigation has been performed using a density functional theory (DFT) method employing the Perdew-Burke-Ernzerhof (PBE) functional with the def2TZVPP basis set to explore the different possible routes and efficiency of the catalysts. Results reveal the feasibility of H2 dissociation on all three Cu2, Cu2+, and Cu2- dimers. The negatively charged hydride formed during H2 dissociation on Cu2 and Cu2+ dimers facilitates the formation of the HCOO* intermediate over COOH*, thereby providing product selectivity for HCOOH above CO. However, the reaction on the Cu2- dimer forms both HCOO* and COOH* intermediates, but HCOO*, being kinetically more favorable, results in HCOOH production. The free-energy change suggests that the complete reaction on Cu2 and Cu2+ dimers forms a stable product compared to the Cu2- dimer. Furthermore, H3COH production is studied using the title catalysts via the obtained HCOOH* intermediate from the reaction channel. Transition state theory (TST) has been considered to evaluate the rate constants for each step of the reaction. Overall results suggest Cu2 to be better compared to Cu2+ and Cu2- dimers for HCOOH formation and Cu2+ over Cu2 and Cu2- dimers to be more efficient for H3COH formation. This work opens the way for further investigation of the reaction mechanism and development of an efficient catalyst for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shilpa Neog
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Priyanka Dutta
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Partha Pratim Churi
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Dergaon Kamal Dowerah College, Dergaon-785614, Assam, India
| | - Plaban Jyoti Sarma
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
- Department of Chemistry, Gargaon College, Simaluguri-785686, Sivsagar, Assam, India
| | - Nand Kishor Gour
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| | - Ramesh Chandra Deka
- CMML-Catalysis and Molecular Modelling Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur, Napaam-784028, Assam, India
| |
Collapse
|
2
|
Bersenkowitsch NK, Madlener SJ, Heller J, van der Linde C, Ončák M, Beyer MK. Spectroscopy of cluster aerosol models: IR and UV spectra of hydrated glyoxylate with and without sea salt. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2023; 3:1396-1406. [PMID: 38013930 PMCID: PMC10569154 DOI: 10.1039/d3ea00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/29/2023] [Indexed: 11/29/2023]
Abstract
Glyoxylic acid is formed in the troposphere by oxidation of organic molecules. In sea salt aerosols, it is expected to be present as glyoxylate, integrated into the salt environment and strongly interacting with water molecules. In water, glyoxylate is in equilibrium with its gem-diol form. To understand the influence of water and salt on the photophysics and photochemistry of glyoxylate, we generate small model clusters containing glyoxylate by electrospray ionization and study them by Fourier-Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry. We used infrared multiple photon dissociation spectroscopy and UV/vis photodissociation spectroscopy for structural characterization as well as quantum chemical calculations to model the spectra and dissociation patterns. Resonant absorption of infrared radiation leads to water evaporation, which indicates that water and glyoxylate are separate molecular entities in a significant fraction of the clusters, in line with the observed absorption of UV light in the actinic region. Hydration of glyoxylate leads to a change of the dihedral angle in the CHOCOO-·H2O complex, causing a slight redshift of the S1 ← S0 transition. However, the barriers for internal rotation are below 5 kJ mol-1, which explains the broad S1 ← S0 absorption extending from about 320 to 380 nm. Most importantly, hydration hinders dissociation in the S1 state, thus enhancing the quantum yield of fluorescence combined with water evaporation. No C-C bond photolysis is observed, but due to the limited signal-to-noise ratio, it cannot be ruled out. The quantum yield, however, will be relatively low. Fluorescence dominates the photophysics of glyoxylate embedded in the dry salt cluster, but the quantum yield shifts towards internal conversion upon addition of one or two water molecules.
Collapse
Affiliation(s)
- Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Sarah J Madlener
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| |
Collapse
|
3
|
Pritzi M, Pascher TF, Grutza ML, Kurz P, Ončák M, Beyer MK. Decomposition of Halogenated Molybdenum Sulfide Dianions [Mo 3S 7X 6] 2- (X = Cl, Br, I). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1753-1760. [PMID: 35904429 PMCID: PMC9460775 DOI: 10.1021/jasms.2c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 05/26/2023]
Abstract
Molybdenum sulfides are considered a promising and inexpensive alternative to platinum as a catalyst for the hydrogen evolution reaction. In this study, we perform collision-induced dissociation experiments in the gas phase with the halogenated molybdenum sulfides [Mo3S7Cl6]2-, [Mo3S7Br6]2-, and [Mo3S7I6]2-. We show that the first fragmentation step for all three dianions is charge separation via loss of a halide ion. As a second step, further halogen loss competes with the dissociation of a disulfur molecule, whereas the former becomes energetically more favorable and the latter becomes less favorable from chlorine via bromine to iodine. We show that the leaving S2 group is composed of sulfur atoms from two bridging groups. These decomposition pathways differ drastically from the pure [Mo3S13]2- clusters. The obtained insight into preferred dissociation pathways of molybdenum sulfides illustrate possible reaction pathways during the activation of these substances in a catalytic environment.
Collapse
Affiliation(s)
- Marco Pritzi
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Tobias F. Pascher
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Marie-Luise Grutza
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Philipp Kurz
- Institut
für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts 2022. [DOI: 10.3390/catal12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The inclusion of transition metal elements within metal–organic frameworks (MOFs) is considered one of the most promising approaches for enhancing the catalytic capability of MOFs. In this study, MOF-253 containing bipyridine coordination sites is investigated for possible transition metal chelation, and a consequent possible CO2 reduction mechanism in the formation of formic acid. All transition metal elements of the third, fourth and fifth periods except hafnium and the lanthanide series are considered using density functional theory calculations. Two distinct types of CO2 reduction mechanisms are identified: (1) the five-coordination Pd center, which promotes formic acid generation via an intramolecular proton transfer pathway; (2) several four-coordination metal centers, including Mn, Pd, and Pt, which generate formic acid by means of heterolytic hydrogen activation. The MOF-253 environment is found to promote beneficial steric hindrance, and to constrain metal–ligand orientation, which consequently facilitates the formation of formic acid, particularly with the tetrahedral Mn center at high-spin electronic state.
Collapse
|
5
|
Liu G, Zhu Z, Marshall M, Blankenhorn M, Bowen KH. CO 2 Activation and Hydrogenation by Palladium Hydride Cluster Anions. J Phys Chem A 2021; 125:1747-1753. [PMID: 33620232 DOI: 10.1021/acs.jpca.1c00204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometric analysis of the anionic products of interaction between palladium hydride anions, PdH-, and carbon dioxide, CO2, in a reaction cell shows an efficient generation of the PdHCO2- intermediate and isolated formate product. Multiple isomers of the PdHCO2- intermediates are identified by a synergy between negative ion photoelectron spectroscopy and quantum-chemical calculations. It is shown that a direct mechanism, in which the H atom in PdH- directly activates and hydrogenates CO2, leads to the formation of the formate product. An indirect mechanism, on the other hand, leads to a stable HPdCO2- structure, where CO2 is chemisorbed onto the Pd atom.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Infrared multiple photon dissociation spectroscopy of anionic copper formate clusters. J Chem Phys 2020; 153:184301. [DOI: 10.1063/5.0030034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionen und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Pascher TF, Barwa E, van der Linde C, Beyer MK, Ončák M. Photochemical activation of carbon dioxide in Mg +(CO 2)(H 2O) 0,1. Theor Chem Acc 2020; 139:127. [PMID: 32655309 PMCID: PMC7335376 DOI: 10.1007/s00214-020-02640-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/20/2020] [Indexed: 11/25/2022]
Abstract
We combine multi-reference ab initio calculations with UV-VIS action spectroscopy to study photochemical activation of CO2 on a singly charged magnesium ion, [MgCO2(H2O)0,1]+, as a model system for the metal/ligand interactions relevant in CO2 photochemistry. For the non-hydrated species, two separated Mg+ 3s-3p bands are observed within 5.0 eV. The low-energy band splits upon hydration with one water molecule. [Mg(CO2)]+ decomposes highly state-selectively, predominantly via multiphoton processes. Within the low-energy band, CO2 is exclusively lost within the excited state manifold. For the high-energy band, an additional pathway becomes accessible: the CO2 ligand is activated via a charge transfer, with photochemistry taking place on the CO2 - moiety eventually leading to a loss of CO after absorption of a second photon. Upon hydration, already excitation into the first and second excited state leads to CO2 activation in the excited state minimum; however, CO2 predominantly evaporates upon fluorescence or absorption of another photon.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Erik Barwa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. UV/Vis Spectroscopy of Copper Formate Clusters: Insight into Metal-Ligand Photochemistry. Chemistry 2020; 26:8286-8295. [PMID: 32155292 PMCID: PMC7384192 DOI: 10.1002/chem.202000280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/13/2022]
Abstract
The electronic structure and photochemistry of copper formate clusters, CuI2(HCO2)3− and CuIIn(HCO2)2n+1−, n≤8, are investigated in the gas phase by using UV/Vis spectroscopy in combination with quantum chemical calculations. A clear difference in the spectra of clusters with CuI and CuII copper ions is observed. For the CuI species, transitions between copper d and s/p orbitals are recorded. For stoichiometric CuII formate clusters, the spectra are dominated by copper d–d transitions and charge‐transfer excitations from formate to the vacant copper d orbital. Calculations reveal the existence of several energetically low‐lying isomers, and the energetic position of the electronic transitions depends strongly on the specific isomer. The oxidation state of the copper centers governs the photochemistry. In CuII(HCO2)3−, fast internal conversion into the electronic ground state is observed, leading to statistical dissociation; for charge‐transfer excitations, specific excited‐state reaction channels are observed in addition, such as formyloxyl radical loss. In CuI2(HCO2)3−, the system relaxes to a local minimum on an excited‐state potential‐energy surface and might undergo fluorescence or reach a conical intersection to the ground state; in both cases, this provides substantial energy for statistical decomposition. Alternatively, a CuII(HCO2)3Cu0− biradical structure is formed in the excited state, which gives rise to the photochemical loss of a neutral copper atom.
Collapse
Affiliation(s)
- Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020, Innsbruck, Austria
| |
Collapse
|
9
|
Bersenkowitsch NK, Ončák M, Heller J, Pascher TF, van der Linde C, Beyer MK. Evidence for lactone formation during infrared multiple photon dissociation spectroscopy of bromoalkanoate doped salt clusters. Phys Chem Chem Phys 2020; 22:12028-12038. [PMID: 32421138 PMCID: PMC7116335 DOI: 10.1039/d0cp00272k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction mechanisms of organic molecules in a salt environment are of
fundamental interest and are potentially relevant for atmospheric chemistry, in
particular sea-salt aerosols. Here, we found evidence for lactone formation upon
infrared multiple photon dissociation (IRMPD) of non-covalent bromoalkanoate
complexes as well as bromoalkanoate embedded in sodium iodide clusters. The
mechanism of lactone formation from bromoalkanoates of different chain lengths
is studied in the gas phase with and without salt environment by a combination
of IRMPD and quantum chemical calculations. IRMPD spectra are recorded in the
833-3846 cmT1 range by
irradiating the clusters with tunable laser systems while they are stored in the
cell of a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer.
The measurements of the binary complex
Br(CH2)mCOOH·Br(CH2)mCOO- for
m = 4 indicate valerolactone formation without salt
environment while lactone formation is hindered for longer chain lengths. When
embedded in sodium iodide clusters, butyrolactone formation from 4-bromobutyrate
seems to take place already during formation of the doped clusters in the
electrospray process, evidenced by the infrared (IR) signature of the lactone.
In contrast, IRMPD spectra of sodium iodide clusters containing 5-bromovalerate
contain signatures for both valerate as well as valerolactone. In both cases,
however, a neutral fragment corresponding to the mass of valerolactone is
eliminated, indicating that ring formation can be activated by IR light in the
salt cluster. Quantum chemical calculations show that already complexation with
one sodium ion significantly increases the barrier for lactone formation for all
chain lengths. IRMPD of sodium iodide clusters doped with neutral bromoalkanoic
acid molecules proceeds by elimination of HI or desorption of the intact acid
molecule from the cluster.
Collapse
Affiliation(s)
- Nina K Bersenkowitsch
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Jakob Heller
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Tobias F Pascher
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
10
|
Liu G, Poths P, Zhang X, Zhu Z, Marshall M, Blankenhorn M, Alexandrova AN, Bowen KH. CO 2 Hydrogenation to Formate and Formic Acid by Bimetallic Palladium-Copper Hydride Clusters. J Am Chem Soc 2020; 142:7930-7936. [PMID: 32250623 DOI: 10.1021/jacs.0c01855] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mass spectrometric analysis of the anionic products of interaction between bimetallic palladium-copper tetrahydride anions, PdCuH4-, and carbon dioxide, CO2, in a reaction cell shows an efficient generation of the PdCuCO2H4- intermediate and formate/formic acid complexes. Multiple structures of PdCuH4- and PdCuCO2H4- are identified by a synergy between anion photoelectron spectroscopy and quantum chemical calculations. The higher energy PdCuH4- isomer is shown to drive the catalytic hydrogenation of CO2, emphasizing the importance of accounting for higher energy isomers for cluster catalytic activity. This study represents the first example of CO2 hydrogenation by bimetallic hydride clusters.
Collapse
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Patricia Poths
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 605 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Xinxing Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (ReCAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Moritz Blankenhorn
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 605 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Kit H Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Barwa E, Ončák M, Pascher TF, Herburger A, van der Linde C, Beyer MK. Infrared Multiple Photon Dissociation Spectroscopy of Hydrated Cobalt Anions Doped with Carbon Dioxide CoCO 2 (H 2 O) n - , n=1-10, in the C-O Stretch Region. Chemistry 2020; 26:1074-1081. [PMID: 31617628 PMCID: PMC7051846 DOI: 10.1002/chem.201904182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Abstract
We investigate anionic [Co,CO2 ,nH2 O]- clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250-2234 cm-1 using an FT-ICR mass spectrometer. We show that both CO2 and H2 O are activated in a significant fraction of the [Co,CO2 ,H2 O]- clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C-O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C-O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2 - . However, calculations find Co(HCOO)(OH)- as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590-1730 cm-1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH)- . Upon additional hydration, all species [Co,CO2 ,nH2 O]- , n≥2, undergo IRMPD through loss of H2 O molecules as a relatively weakly bound messenger. The main spectral features are the C-O stretching mode of the CO ligand around 1900 cm-1 , the water bending mode mixed with the antisymmetric C-O stretching mode of the HCOO- ligand around 1580-1730 cm-1 , and the symmetric C-O stretching mode of the HCOO- ligand around 1300 cm-1 . A weak feature above 2000 cm-1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.
Collapse
Affiliation(s)
- Erik Barwa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Andreas Herburger
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
12
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Decomposition of Copper Formate Clusters: Insight into Elementary Steps of Calcination and Carbon Dioxide Activation. ChemistryOpen 2019; 8:1453-1459. [PMID: 31871848 PMCID: PMC6916659 DOI: 10.1002/open.201900282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/13/2019] [Indexed: 11/29/2022] Open
Abstract
The decomposition of copper formate clusters is investigated in the gas phase by infrared multiple photon dissociation of Cu(II) n (HCO2)2n+1 -, n≤8. In combination with quantum chemical calculations and reactivity measurements using oxygen, elementary steps of the decomposition of copper formate are characterized, which play a key role during calcination as well as for the function of copper hydride based catalysts. The decomposition of larger clusters (n >2) takes place exclusively by the sequential loss of neutral copper formate units Cu(II)(HCO2)2 or Cu(II)2(HCO2)4, leading to clusters with n=1 or n=2. Only for these small clusters, redox reactions are observed as discussed in detail previously, including the formation of formic acid or loss of hydrogen atoms, leading to a variety of Cu(I) complexes. The stoichiometric monovalent copper formate clusters Cu(I) m (HCO2) m+1 -, (m=1,2) decompose exclusively by decarboxylation, leading towards copper hydrides in oxidation state +I. Copper oxide centers are obtained via reactions of molecular oxygen with copper hydride centers, species containing carbon dioxide radical anions as ligands or a Cu(0) center. However, stoichiometric copper(I) and copper(II) formate Cu(I)(HCO2)2 - and Cu(II)(HCO2)3 -, respectively, is unreactive towards oxygen.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|
13
|
Pascher TF, Ončák M, van der Linde C, Beyer MK. Release of Formic Acid from Copper Formate: Hydride, Proton-Coupled Electron and Hydrogen Atom Transfer All Play their Role. Chemphyschem 2019; 20:1420-1424. [PMID: 30958610 PMCID: PMC6563433 DOI: 10.1002/cphc.201900095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/22/2019] [Indexed: 01/27/2023]
Abstract
Although the mechanism for the transformation of carbon dioxide to formate with copper hydride is well understood, it is not clear how formic acid is ultimately released. Herein, we show how formic acid is formed in the decomposition of the copper formate clusters Cu(II)(HCOO)3- and Cu(II)2 (HCOO)5- . Infrared irradiation resonant with the antisymmetric C-O stretching mode activates the cluster, resulting in the release of formic acid and carbon dioxide. For the binary cluster, electronic structure calculations indicate that CO2 is eliminated first, through hydride transfer from formate to copper. Formic acid is released via proton-coupled electron transfer (PCET) to a second formate ligand, evidenced by close to zero partial charge and spin density at the hydrogen atom in the transition state. Concomitantly, the two copper centers are reduced from Cu(II) to Cu(I). Depending on the detailed situation, either PCET or hydrogen atom transfer (HAT) takes place.
Collapse
Affiliation(s)
- Tobias F. Pascher
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Christian van der Linde
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| | - Martin K. Beyer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstraße 256020InnsbruckAustria
| |
Collapse
|