1
|
He H, Zhong Z, Fan P, Zhao W, Yuan D. Regulating Optoelectronic and Thermoelectric Properties of Organic Semiconductors by Heavy Atom Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405156. [PMID: 39535469 DOI: 10.1002/smll.202405156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Heavy atom effects can be used to enhance intermolecular interaction, regulate quinoidal resonance properties, increase bandwidths, and tune diradical characters, which have significant impacts on organic optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), etc. Meanwhile, the introduction of heavy atoms is shown to promote charge transfer, enhance air stability, and improve device performances in the field of organic thermoelectrics (OTEs). Thus, heavy atom effects are receiving more and more attention. However, regulating heavy atoms in organic semiconductors is still meeting great challenges. For example, heavy atoms will lead to solubility and stability issues (tellurium substitution) and lack of versatile design strategy and effective synthetic methods to be incorporated into organic semiconductors, which limit their application in electronic devices. Therefore, this work timely summarizes the unique functionalities of heavy atom effects, and up-to-date progress in organic electronics including OFETs, OPVs, OLEDs, and OTEs, while the structure-performance relationships between molecular designs and electronic devices are clearly elucidated. Furthermore, this review systematically analyzes the remaining challenges in regulating heavy atoms within organic semiconductors, and design strategies toward efficient and stable organic semiconductors by the introduction of novel heavy atoms regulation are proposed.
Collapse
Affiliation(s)
- Hao He
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ziting Zhong
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Peng Fan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Dafei Yuan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Ye S, Lotocki V, Xu H, Seferos DS. Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chem Soc Rev 2022; 51:6442-6474. [PMID: 35843215 DOI: 10.1039/d2cs00139j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five-membered aromatic rings containing Group 16 elements (O, S, Se, and Te), also referred as chalcogenophenes, are ubiquitous building blocks for π-conjugated polymers (CPs). Among these, polythiophenes have been established as a model system to study the interplay between molecular structure, solid-state organization, and electronic performance. The judicious substitution of alternative heteroatoms into polythiophenes is a promising strategy for tuning their properties and improving the performance of derived organic electronic devices, thus leading to the recent abundance of CPs containing furan, selenophene, and tellurophene. In this review, we first discuss the current status of Kumada, Negishi, Murahashi, Suzuki-Miyaura, and direct arylation polymerizations, representing the best routes to access well-defined chalcogenophene-containing homopolymers and copolymers. The self-assembly, optical, solid-state, and electronic properties of these polymers and their influence on device performance are then summarized. In addition, we highlight post-polymerization modifications as effective methods to transform polychalcogenophene backbones or side chains in ways that are unobtainable by direct polymerization. Finally, the major challenges and future outlook in this field are presented.
Collapse
Affiliation(s)
- Shuyang Ye
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Victor Lotocki
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Hao Xu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
3
|
Lu P, Li H, Wang Z, Wang Z, Wang Y. Preparation and photoluminescent properties of amino 2,1,3-benzoxadiazoles (Am-BODs) with D-A-D and D-A-A conjugation systems. Chem Asian J 2022; 17:e202101357. [PMID: 35129880 DOI: 10.1002/asia.202101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/05/2022] [Indexed: 11/07/2022]
Abstract
A series of D-A-D and D-A-A conjugated compounds composed of a benzoxadiazole core and corresponding amino were synthesized. Their photoluminescent properties in different states were investigated as well. In the solution state, some compounds were observed the usual anti-Kasha's emission in toluene and the solvatofluorochromic phenomenon. Meanwhile, compound 1a could be utilized as fluorescent chemosensors for the environmental acidity, and 2c could be developed for detecting fluoride anion. Moreover, they were emissive in powders and films, and 2d could be applied to the emissive layer in red OLEDs.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang University, Chemistry Department, 20 Yugu Road, 310027, Hangzhou, CHINA
| | - Hanjie Li
- Zhejiang University, Department of Chemistry, CHINA
| | - Zhichao Wang
- Zhejiang University, Department of Chemistry, CHINA
| | - Zaibin Wang
- Zhejiang University, Department of Chemistry, CHINA
| | | |
Collapse
|
4
|
Abstract
This review highlights the hydroelementation reactions of conjugated and separated diynes, which depending on the process conditions, catalytic system, as well as the type of reagents, leads to the formation of various products: enynes, dienes, allenes, polymers, or cyclic compounds. The presence of two triple bonds in the diyne structure makes these compounds important reagents but selective product formation is often difficult owing to problems associated with maintaining appropriate reaction regio- and stereoselectivity. Herein we review this topic to gain knowledge on the reactivity of diynes and to systematise the range of information relating to their use in hydroelementation reactions. The review is divided according to the addition of the E-H (E = Mg, B, Al, Si, Ge, Sn, N, P, O, S, Se, Te) bond to the triple bond(s) in the diyne, as well as to the type of the reagent used, and the product formed. Not only are the hydroelementation reactions comprehensively discussed, but the synthetic potential of the obtained products is also presented. The majority of published research is included within this review, illustrating the potential as well as limitations of these processes, with the intent to showcase the power of these transformations and the obtained products in synthesis and materials chemistry.
Collapse
Affiliation(s)
- Jędrzej Walkowiak
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Jakub Szyling
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan. .,Adam Mickiewicz University in Poznan, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in Poznan, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan.
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
5
|
Paixão DB, Soares EGO, Salles HD, Silva CDG, Rampon DS, Schneider PH. Rongalite in PEG-400 as a general and reusable system for the synthesis of 2,5-disubstituted chalcogenophenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01069k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we report the use of rongalite in PEG-400 as a general, efficient, and environmentally benign reductive system for the synthesis of a wide range of 2,5-disubstituted chalcogenophenes from elemental sulfur, selenium and tellurium.
Collapse
Affiliation(s)
- Douglas B. Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Eduardo G. O. Soares
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Helena D. Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Caren D. G. Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Daniel S. Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990, Curitiba, PR, Brazil
| | - Paulo H. Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Braun CA, Ferguson MJ, Rivard E. Tellura(benzo)bithiophenes: Synthesis, Oligomerization, and Phosphorescence. Inorg Chem 2021; 60:2672-2679. [PMID: 33481578 DOI: 10.1021/acs.inorgchem.0c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of planar π-extended Te-containing heteroacenes, termed tellura(benzo)bithiophenes, were synthesized. This new structural class of heterocycle features a tellurophene ring fused to a benzobithiophene unit with aromatic side groups (either -C6H4iPr or -C6H4OCH3) positioned at the 2- and 5-positions of the tellurophene moiety. Although attempts to enhance molecular rigidity and extend ring-framework π-delocalization in a cumenyl (-C6H4iPr)-capped tellura(benzo)bithiophene led to oxidation (and Te-C bond scission) to form a diene-one, the formation of an oligomeric tellura(benzo)bithiophene was possible via Kumada catalyst-transfer polycondensation (KCTP). Furthermore, one tellura(benzo)bithiophene derivative exhibits orange-red phosphorescence at room temperature in air when incorporated into a poly(methyl methacrylate) host; accompanying TD-DFT computations provided insight into a potential mechanism for the observed phosphorescence.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Dillon AS, Flynn BL. Polyynes to Polycycles: Domino Reactions Forming Polyfused Chalcogenophenes. Org Lett 2020; 22:2987-2990. [PMID: 32216362 DOI: 10.1021/acs.orglett.0c00733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyfused chalcogenophenes are prepared in one step through polyelectrophilic cyclization of polyynes using the ambiphilic reagent MeACl (A = S, Se, or Te). Up to four new rings have been generated under mild conditions, including thiophenes, selenophenes, and tellurophenes.
Collapse
Affiliation(s)
- Annaliese S Dillon
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| | - Bernard L Flynn
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, Victoria, Australia
| |
Collapse
|
8
|
Liu HH, Liang WW, Lai YY, Su YC, Yang HR, Cheng KY, Huang SC, Cheng YJ. Synthesis of side-chain regioregular and main-chain alternating poly(bichalcogenophene)s and an ABC-type periodic poly(terchalcogenophene). Chem Sci 2020; 11:3836-3844. [PMID: 34122851 PMCID: PMC8152668 DOI: 10.1039/d0sc00404a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023] Open
Abstract
Three unsymmetrical diiodobichalcogenophenes SSeI2, STeI2, and SeTeI2 and a diiodoterchalcogenophene SSeTeI2 were prepared. Grignard metathesis of SSeI2, STeI2, SeTeI2, and SSeTeI2 occurred regioselectively at the lighter chalcogenophene site because of its relatively lower electron density and less steric bulk. Nickel-catalyzed Kumada catalyst-transfer polycondensation of these Mg species provided a new class of side-chain regioregular and main-chain AB-type alternating poly(bichalcogenophene)s-PSSe, PSTe, and PSeTe-through a chain-growth mechanism. The ring-walking of the Ni catalyst from the lighter to the heavier chalcogenophene facilitated subsequent oxidative addition, thereby suppressing the possibility of chain-transfer or chain-termination. More significantly, the Ni catalyst could walk over the distance of three rings (ca. 1 nm)-from a thiophene unit via a selenophene unit to a tellurophene unit-to form PSSeTe, the first ABC-type regioregular and periodic poly(terchalcogenophene) comprising three different types of 3-hexylchalcogenophenes.
Collapse
Affiliation(s)
- Huai-Hsuan Liu
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Wei-Wei Liang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yu-Ying Lai
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Chen Su
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Hau-Ren Yang
- Institute of Polymer Science and Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Kuang-Yi Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Sheng-Cih Huang
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
| | - Yen-Ju Cheng
- Department of Applied Chemistry, National Chiao Tung University 1001 University Road Hsin-Chu Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University 1001 University Road Hsinchu 30010 Taiwan
| |
Collapse
|
9
|
Yadav P, Patra A. Recent advances in poly(3,4-ethylenedioxyselenophene) and related polymers. Polym Chem 2020. [DOI: 10.1039/d0py01191f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the recent progress in synthesis, properties, applications and future outlook of PEDOS based conjugated polymers.
Collapse
Affiliation(s)
- Preeti Yadav
- Photovoltaic Metrology Section
- Advanced Materials & Device Metrology Division
- CSIR-National Physical Laboratory
- New Delhi-110012
- India
| | - Asit Patra
- Photovoltaic Metrology Section
- Advanced Materials & Device Metrology Division
- CSIR-National Physical Laboratory
- New Delhi-110012
- India
| |
Collapse
|
10
|
Rivard E. Metallacycle Transfer and its Link to Light-Emitting Materials and Conjugated Polymers. CHEM REC 2019; 20:640-648. [PMID: 31833670 DOI: 10.1002/tcr.201900095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Major advances in optoelectronic technologies (e. g., solar cells, organic light-emitting diodes, etc…) are prefaced by the discovery of new synthetic methodologies. In this review, the key role of the Fagan-Nugent reaction in enabling our team (and others) to gain access to new building blocks for luminescent materials and conjugated polymers bearing p-block elements will be described. The Fagan-Nugent reaction is extremely powerful as a synthetic tool since the efficient zirconium-element atom exchange involved affords a wide range of unsaturated inorganic heterocycles of controllable composition and function.
Collapse
Affiliation(s)
- Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|