1
|
Jakka SK, Silva MMP, Soares MJ, Pavani K. Exploring the potential of Eu 3+ and Mn 4+ activated LaAlO 3 phosphors as red and far-red emitters for horticulture lighting. RSC Adv 2023; 13:31314-31320. [PMID: 37901268 PMCID: PMC10600514 DOI: 10.1039/d3ra03241h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
The development of efficient red and far-red emitters, for efficient plant absorption in the Photosynthetically Active Radiation (PAR) region, holds significance in contemporary plant growth control. This study focuses on the synthesis and characterization of LaAlO3 as a host material, doped with Eu3+ and Mn4+ ions, using a solid-state reaction method. The investigation encompasses the creation and analysis of both single-doped and co-doped samples, employing techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. XRD analysis consistently confirmed the perovskite-like structure of all samples, devoid of detectable impurities or major structural changes due to doping. SEM images revealed a uniform distribution of regularly shaped particles for the co-doped sample. The PL spectroscopy showed that the doping led to strong photoluminescence, with the co-doped sample exhibiting the intensity of each of the ions independently neither exhibiting quenching nor energy transfer mechanisms. The excitation spectrum of Eu3+ exhibited a broad charge transfer band at approximately 328 nm, coupled with characteristic f-f excitation bands. On the other hand, the Mn4+ ion's excitation spectrum featured transitions from ground state (4A2g) electrons excited to higher excited states (4T1g, 2T2g, and 4T2g) centered at 350 nm and within the region 250-550 nm. The co-doped sample was excited at a common excitation wavelength of 460 nm and underwent an in-depth examination of its photoluminescent properties, including decay curves analysis and time dependence also. The results from this study suggest that the synthesized phosphor materials exhibit substantial potential for diverse applications, including but not limited to solid-state lighting for efficient plant growth.
Collapse
Affiliation(s)
- S K Jakka
- I3N & Physics Department, University of Aveiro Aveiro 3810-193 Portugal
| | - M M P Silva
- I3N & Physics Department, University of Aveiro Aveiro 3810-193 Portugal
| | - M J Soares
- I3N & Physics Department, University of Aveiro Aveiro 3810-193 Portugal
| | - K Pavani
- I3N & Physics Department, University of Aveiro Aveiro 3810-193 Portugal
| |
Collapse
|
2
|
Panda J, Tripathy SP, Dash S, Ray A, Behera P, Subudhi S, Parida K. Inner transition metal-modulated metal organic frameworks (IT-MOFs) and their derived nanomaterials: a strategic approach towards stupendous photocatalysis. NANOSCALE 2023; 15:7640-7675. [PMID: 37066602 DOI: 10.1039/d3nr00274h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photocatalysis, as an amenable and effective process, can be adopted for pollution remediation and to alleviate the ongoing energy crisis. In this case, recently, metal organic frameworks (MOFs) have attracted increasing attention in the field of photocatalysis owning to their unique characteristics including large specific surface area, tuneable pore architecture, mouldable framework composition, tuneable band structure, and exceptional photon absorption tendency complimented with superior anti-recombination of excitons. Among the plethora of frameworks, inner transition metal based-MOFs (IT-MOFs) have started to garner significant traction as photocatalysts due to their distinct characteristics compared to conventional transition metal-based frameworks. Typically, IT-MOFs have the tendency to generate high nuclearity clusters and possess abundant Lewis acidic sites, together with mixed valency, which aids in easily converting redox couples, thereby making them a suitable candidate for various photocatalytic reactions. Therefore, in this contribution, we aim to summarise the excellent photocatalytic performance of IT-MOFs and their composites accompanied by a thorough discussion of their topological changes with a variation in the structure of the metal cluster, fabrication routes, morphological features, and physico-chemical properties together with a brief discussion of computational findings. Moreover, we attempt to explore the scientific understanding of the functionalities of IT-MOFs and their composites with detailed mechanistic pathways for in-depth clarity towards photocatalysis. Furthermore, we present a comprehensive analysis of IT-MOFs for various crucial photocatalytic applications such as H2/O2 evolution, organic pollutant degradation, organic transformation, and N2 and CO2 reduction. In addition, we discuss the measures employed to enhance their performance with some future directions to address the challenges with IT-MOF-based nanomaterials.
Collapse
Affiliation(s)
- Jayashree Panda
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Suraj Prakash Tripathy
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Srabani Dash
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Asheli Ray
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Pragyandeepti Behera
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Satyabrata Subudhi
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| | - Kulamani Parida
- Centre for Nano Science and Nanotechnology, Siksha 'O' Anusnadhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India.
| |
Collapse
|
3
|
Jaramillo-Fierro X, León R. Effect of Doping TiO 2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061068. [PMID: 36985962 PMCID: PMC10055693 DOI: 10.3390/nano13061068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
Free cyanide is a highly dangerous compound for health and the environment, so treatment of cyanide-contaminated water is extremely important. In the present study, TiO2, La/TiO2, Ce/TiO2, and Eu/TiO2 nanoparticles were synthesized to assess their ability to remove free cyanide from aqueous solutions. Nanoparticles synthesized through the sol-gel method were characterized by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transformed infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and specific surface area (SSA). Langmuir and Freundlich isotherm models were utilized to fit the adsorption equilibrium experimental data, and pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to fit the adsorption kinetics experimental data. Cyanide photodegradation and the effect of reactive oxygen species (ROS) on the photocatalytic process were investigated under simulated solar light. Finally, reuse of the nanoparticles in five consecutive treatment cycles was determined. The results showed that La/TiO2 has the highest percentage of cyanide removal (98%), followed by Ce/TiO2 (92%), Eu/TiO2 (90%), and TiO2 (88%). From these results, it is suggested that La, Ce, and Eu dopants can improve the properties of TiO2 as well as its ability to remove cyanide species from aqueous solutions.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Ricardo León
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
4
|
Comparative Study of the Effect of Doping ZnTiO 3 with Rare Earths (La and Ce) on the Adsorption and Photodegradation of Cyanide in Aqueous Systems. Int J Mol Sci 2023; 24:ijms24043780. [PMID: 36835191 PMCID: PMC9960395 DOI: 10.3390/ijms24043780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanide is a highly toxic compound that can pose serious health problems to both humans and aquatic organisms. Therefore, the present comparative study focuses on the removal of total cyanide from aqueous solutions by photocatalytic adsorption and degradation methods using ZnTiO3 (ZTO), La/ZnTiO3 (La/ZTO), and Ce/ZnTiO3 (Ce/ZTO). The nanoparticles were synthesized by the sol-gel method and characterized by X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), Diffuse reflectance spectroscopy (DRS), and Specific surface area (SSA). The adsorption equilibrium data were fitted to the Langmuir and Freundlich isotherm models. Adsorption kinetics were also evaluated using the pseudo-first-order and pseudo-second-order models and the intraparticle diffusion model. Likewise, the photodegradation of cyanide under simulated sunlight was investigated and the reusability of the synthesized nanoparticles for cyanide removal in aqueous systems was determined. The results demonstrated the effectiveness of doping with lanthanum (La) and cerium (Ce) to improve the adsorbent and photocatalytic properties of ZTO. In general, La/ZTO showed the maximum percentage of total cyanide removal (99.0%) followed by Ce/ZTO (97.0%) and ZTO (93.6%). Finally, based on the evidence of this study, a mechanism for the removal of total cyanide from aqueous solutions using the synthesized nanoparticles was proposed.
Collapse
|
5
|
Ech-Chergui AN, Kadari AS, Khan MM, Popad A, Khane Y, Guezzoul M, Leostean C, Silipas D, Barbu-Tudoran L, Abdelhalim Z, Bennabi F, Driss-Khodja K, Amrani B. Spray pyrolysis-assisted fabrication of Eu-doped ZnO thin films for antibacterial activities under visible light irradiation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
A novel conductive rGO/ZnO/PSF membrane with superior water flux for electrocatalytic degradation of organic pollutants. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts 2021. [DOI: 10.3390/catal11121520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the last decades photocatalysis has become one of the most employed technologies for the implementation of the so-called Advanced Oxidation Processes (AOPs) for the removal of harmful pollutants from wastewaters. The materials identified as the best photocatalysts are transition metal oxides, in which the band structure allows charge carrier separation upon solar irradiation. The photoinduced charge carrier can thus cause oxidative and reductive redox reactions at the surface, inducing the formation of the radical species able to initiate the AOPs. Despite the great advantages of this process (non-toxic, cheap and environmentally clean), the main drawback lies in the fact that the most efficient semiconductors are only able to absorb UV irradiation, which accounts for only 5% of the total solar irradiation at the Earth’s surface and not enough to generate the required amount of electron-hole pairs. On the other hand, many efforts have been devoted to the sensitization of wide band gap transition metal oxides to visible light, which represents a higher percentage (almost 45%) in the solar electromagnetic spectrum. Among all the strategies to sensitize transition metal oxides to visible irradiation, doping with lanthanides has been less explored. In this regard, lanthanides offer a unique electronic configuration, consisting in 4f orbitals shielded by a 5s5p external shell. This occurrence, coupled with the different occupation of the localized 4f orbitals would provide an astounding opportunity to tune these materials’ properties. In this review we will focus in depth on the modification of two promising photocatalytic transition metal oxides, namely ZnO and ZrO2, with cerium, europium and erbium atoms. The aim of the work is to provide a comprehensive overview of the influence of lanthanides on the structural, optical and electronic properties of the modified materials, emphasizing the effect of the different 4f orbital occupation in the three considered doping atoms. Moreover, a large portion of the discussion will be devoted to the structural-properties relationships evidencing the improved light absorption working mechanism of each system and the resulting enhanced photocatalytic performance in the abatement of contaminants in aqueous environments.
Collapse
|
8
|
|
9
|
Kumar M, Negi K, Umar A, Chauhan MS. Photocatalytic and fluorescent chemical sensing applications of La-doped ZnO nanoparticles. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01388-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|