1
|
Wang X, Cheng Y, Li Q, Scheiner S. Triel Bonds with Methyl Groups as Electron Donors. A Pentacoordinate Carbon Atom. Chemphyschem 2024:e202400931. [PMID: 39462203 DOI: 10.1002/cphc.202400931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
The triel bond (TrB) formed between Be(CH3)2/Mg(CH3)2 and TrX3 (Tr=B, Al, and Ga; X=H, F, Cl, Br, and I) is investigated via the MP2/aug-cc-pVTZ(PP) quantum chemical protocol. The C atoms of the methyl groups in M(CH3)2 are characterized by a negative electrostatic potential and act as an electron donor in a triel bond with the π-hole above the Tr atom of planar TrX3. The interaction energy spans a wide range between -2 and -69 kcal/mol. Mg(CH3)2 forms a stronger TrB than does Be(CH3)2, which comports with the more negative electrostatic potential on its methyl groups. Some of the complexes involving Mg display a high degree of transfer of the methyl group from Mg to Tr, which is accompanied by an inversion of the bridging methyl and a sizable pyramidalization of the TrX3 unit. The geometries of these complexes have the properties of the long sought pentacoordinate C which has eluded identification and characterization in the past.
Collapse
Affiliation(s)
- Xin Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Yuwei Cheng
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322-0300, USA
| |
Collapse
|
2
|
Chipanina NN, Shainyan BA, Oznobikhina LP, Lazareva NF. The Rivalry between Intramolecular Tetrel Bonds and Intermolecular Hydrogen Bonds in (O-Si) Chelates of N-Silylmethylamides and -ureas. A Theoretical Study. Chemphyschem 2024; 25:e202400410. [PMID: 39005005 DOI: 10.1002/cphc.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Indexed: 07/16/2024]
Abstract
The comparison of the results of theoretical calculations of (O-Si) chelates of N-silylmethylated amides and ureas with the axial chlorine or fluorine atom at silicon to the data of X-ray analysis of related compounds revealed the formation of covalent O-Si tetrel bonds (TB) or noncovalent O⋅⋅⋅Si tetrel bonds (NTB). The nature of the formed tetrel bond depends on the substituents at silicon and the polarity of the medium. The competition between the intramolecular TB and intermolecular hydrogen bonds (HB) with proton donors depends on the center of basicity involved in the formation of HB, which could be either oxygen or halogen. The hydrogen bonding can result in changing the nature of the tetrel bonds from covalent to noncovalent and vice versa by varying their lengths and energies. The O-Si bond energies estimated by QTAIM analysis of N-[(chlorodimethylsilyl)methyl]-N-methylacetamide and its H-complexes vary within the range of 7.2 and 12 kcal/mol in gas and solution, respectively, and correlate with the O-Si bond lengths.
Collapse
Affiliation(s)
- Nina N Chipanina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| | - Bagrat A Shainyan
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| | - Larisa P Oznobikhina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| | - Nataliya F Lazareva
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033, Irkutsk, Russian Federation
| |
Collapse
|
3
|
Wu Q, An X, Li Q. Tetrel bond involving -CH 3 group in H nXCH 3 (X = F, Cl, and Br, n = 0; X = O, S, and Se, n = 1; X = N, P, and As, n = 2). Cooperativity with triel bond and beryllium bond. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2186721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| | - Xiulin An
- College of Life Science, Yantai University, Yantai, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
4
|
Complexes of carbon dioxide with methanol and its monohalogen-substituted: Beyond the tetrel bond. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Malonaldehyde-like Systems: BeF2 Clusters—A Subtle Balance between Hydrogen Bonds, Beryllium Bonds, and Resonance. SCI 2022. [DOI: 10.3390/sci4010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stability of malonaldehyde is governed by intramolecular hydrogen bonds (IMHBs) as well as in malonaldehyde-like systems where oxygen is replaced by N or S at any of the basic sites. As beryllium bonds have been shown to strongly cooperate with hydrogen bonds, this work explores at the high level ab initio G4 level of theory the effect of including this non-covalent interaction in the system through its association with BeF2. Although malonaldehyde follows the expected trends, where the formation of a pseudocyclic form is favored also when IMHB and Be bonds are present, the subtle balance between both non-covalent interactions leads to some surprising results when other heteroatoms are involved, to the point that interaction energies can be much larger than expected or even cyclization is not favored. A complete analysis using different computational tools gives an answer to those cases escaping the predictable trends.
Collapse
|
6
|
Khera M, Goel N. Cooperative Effect of Noncovalent Interactions on Tetrel Bonding in Halogenated Silanes. Chemphyschem 2022; 23:e202100776. [PMID: 35014137 DOI: 10.1002/cphc.202100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Indexed: 11/06/2022]
Abstract
Tetrel bond, a weak noncovalent interaction between the σ -hole of a Group IV element (Silicon in our case) and the cloud of an electronegative element (Oxygen in our case) is the focus of current work. The percentage strengthening of tetrel bond has been investigated by optimising 16 binary complexes of halogenated silane and water of general formula SiX n H 4 - n - H 2 O and 16 ternary complexes, of general formula NaX - SiX n H 4 - n -H 2 O, where X =F, Cl, Br and I and n = 1, 2, 3 and 4 at various levels of theory defined within the formalism of density functional theory (DFT). With the addition of NaX, tetrel bond between Si and O in SiX n H 4 - n - H 2 O gets strengthened up to 49%, owing to cooperativity effect exerted by hydrogen bonding between X and H in the ternary complex NaX - SiX n H 4 - n - H 2 O. In the series of complexes studied here, overall stabilization due to cooperativity lies between 10 kJ/mol to 170 kJ/mol. This large extent of reinforcement due to cooperativity has never been showcased before. The exceptional stabilization and reinforcement owe its genesis to the transformation of the ternary complex into a cluster orchestrated by the H-bonding in most of the cases and covalent bonding in few of the cases.
Collapse
Affiliation(s)
- Mayank Khera
- Punjab University: Panjab University, Chemistry, INDIA
| | - Neetu Goel
- Panjab University, Department of Chemistry, Sector 14, 160014, chandigarh, INDIA
| |
Collapse
|
7
|
Wu Q, Xie X, Li Q, Scheiner S. Enhancement of tetrel bond involving tetrazole-TtR 3 (Tt = C, Si; R = H, F). Promotion of SiR 3 transfer by a triel bond. Phys Chem Chem Phys 2022; 24:25895-25903. [DOI: 10.1039/d2cp04194d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The combination of a CR3 (R = H, F) with a tetrazole can result in a moderate carbon bond, which can be further strengthened by a triel bond. On the other hand, SiR3 group is half transferred between the two N atoms in these conditions.
Collapse
Affiliation(s)
- Qiaozhuo Wu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xiaoying Xie
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
8
|
Yang Q, Zhang X, Li Q. Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds. ACS OMEGA 2021; 6:29037-29044. [PMID: 34746592 PMCID: PMC8567400 DOI: 10.1021/acsomega.1c04085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The tetrel bond formed by HC≡CX, H2C=CHX, and H3CCH2X (X=F, Cl, Br, I) as an electron donor and TH3F (T=C, Si, Ge) was explored by ab initio calculations. The tetrel bond formed by H3CCH2X is the strongest, as high as -3.45 kcal/mol for the H3CCH2F···GeH3F dimer, followed by H2C=CHX, and the weakest bond is from HC≡CX, where the tetrel bond can be as small as -0.8 kcal/mol. The strength of the tetrel bond increases in the order of C < Si < Ge. For the H3CCH2X and HC≡CX complexes, the tetrel bond strength shows a similar increasing tendency with the decrease of the electronegativity of the halogen atom. Electrostatic interaction plays the largest role in the stronger tetrel bonds, while dispersion interaction makes an important contribution to the H2C=CHX complexes.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Xiaolong Zhang
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical
and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| |
Collapse
|
9
|
Sitha S. Tetrel bonding in the realm of transition states favors silicon over Carbon: Role of water as a tetrel spectator in the formation of silaformamide. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Jing X, Zeng Y, Zhang X, Meng L, Li X. Competition and conversion between pnicogen bonds and hydrogen bonds involving prototype organophosphorus compounds. Phys Chem Chem Phys 2021; 23:18794-18805. [PMID: 34612418 DOI: 10.1039/d1cp00474c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ab initio calculations have been performed to investigate the competition and conversion between the pnicogen bonds and hydrogen bonds in complexes containing prototype organophosphorus compounds RPO2 (R = CH3 and CH3O). The competition between the pnicogen bonds and hydrogen bonds is controlled by the magnitude of Vs,min and Vs,max in the prototype organophosphorus compounds. Monomeric methyl metaphosphate (CH3OPO2), with more positive π-holes, is more likely to form pnicogen bonds with different electron donors, such as NH3, H2O, HNC and HCCH. Methoxyphosphinidene oxide (trans- and cis-CH3OPO) is inclined to form hydrogen bonds with H2O, HNC and HCCH. Most of the pnicogen bonds have covalent or partially covalent character, while most of the hydrogen bonds exhibit the noncovalent characteristics of weak interactions. The mechanisms of three typical conversions between the pnicogen bond and the hydrogen bond have been investigated and the breakage and formation of the bonds along the reaction pathways have been analyzed using topological analysis of electron density. For the three studied conversion processes, the transformation between the hydrogen-bonded complex and pnicogen-bonded complex is achieved readily through several T-shape structure transition states.
Collapse
Affiliation(s)
- Xinyue Jing
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Chipanina NN, Oznobikhina LP, Sigalov MV, Serykh VY, Shainyan BA. Electron and Proton Donating Ability of the Pyrrolyl and Diazolyl Derivatives of Cycloalkanones. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221060050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zierkiewicz W, Grabarz A, Michalczyk M, Scheiner S. Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. Chemphyschem 2021; 22:924-934. [PMID: 33876515 DOI: 10.1002/cphc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Indexed: 01/02/2023]
Abstract
Crystal structures document the ability of a TF3 group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring. Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN- anionic base can approach the T either along the extension of a T-C or T-F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA
| |
Collapse
|
13
|
Shen S, Jing X, Zhang X, Li X, Zeng Y. The competition and cooperativity of hydrogen/halogen bond and π-hole bond involving the heteronuclear ethylene analogues. J Comput Chem 2021; 42:908-916. [PMID: 33729600 DOI: 10.1002/jcc.26513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 11/08/2022]
Abstract
The noncovalent interactions involving heteronuclear ethylene analogues H2 CEH2 (E = Si, Ge and Sn) have been studied by the Møller-Plesset perturbation theory to investigate the competition and cooperativity between the hydrogen/halogen bond and π-hole bond. H2 CEH2 has a dual role of being a Lewis base and acid with the region of π-electron accumulation above the carbon atom and the region of π-electron depletion (π-hole) above the E atom to participate in the NCX···CE (X = H and Cl) hydrogen/halogen bond and CE···NCY (Y = H, Cl, Li and Na) π-hole bond, respectively. When HCN/ClCN interacts with H2 CEH2 by two sites, the strength of hydrogen bond/halogen bond is stronger than that of π-hole bond. The π-hole bond becomes obviously stronger when the metal substituent of YCN (Y = Li and Na) interacting with H2 CEH2 , showing the character of partial covalent, its strength is much greater than that of hydrogen/halogen bond. In the ternary complexes, both hydrogen/halogen bond and π-hole bond are simultaneously strengthened compared to those in the binary complexes, especially in the systems containing alkali metal.
Collapse
Affiliation(s)
- Shaojie Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Xinyue Jing
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China.,Hebei Key Laboratory of Inorganic Nano-Materials, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
14
|
Liu N, Liu J, Li Q, Scheiner S. Noncovalent bond between tetrel π-hole and hydride. Phys Chem Chem Phys 2021; 23:10536-10544. [PMID: 33899891 DOI: 10.1039/d1cp01245b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The π-hole above the plane of the X2T'Y molecule (T' = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH3)3 (T = Si, Ge, Sn). The resulting THT' tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol-1. F2T'O engages in the strongest such bonds, as compared to F2T'S, Cl2T'O, or Cl2T'S. The bond weakens as T' grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH3)3, even though the minimum in the electrostatic potential around the H is nearly independent of T. The THT' arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H2O forms an OT' tetrel bond with the second π-hole of F2T'O, and strengthened if H2O participates in an OHO H-bond.
Collapse
Affiliation(s)
- Na Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Jiaxing Liu
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People's Republic of China.
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.
| |
Collapse
|
15
|
Scheiner S. Relative Strengths of a Pnicogen and a Tetrel Bond and Their Mutual Effects upon One Another. J Phys Chem A 2021; 125:2631-2641. [PMID: 33734698 DOI: 10.1021/acs.jpca.1c01211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of the T and Z atoms of TR3ZR2 to engage in a noncovalent interaction with NH3 is assessed by DFT calculations, where the T atom refers to C, Si, and Ge; Z = As, Sb, and P; and substituents R = H and F. In most instances, the tetrel bond (TB) is both stronger and shorter than the pnicogen bond (ZB). These two bond strengths can be equalized, or preference shifted to the ZB, if F substituents are placed on the Z and H on the T atoms. Employing C as the T atom results in a very weak TB, with the ZB clearly favored energetically. The simultaneous formation of both TB and ZB weakens both, particularly the latter, but both bonds survive intact. Geometric and spectroscopic perturbations of the subunits reflect the two types of noncovalent bonds.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University†Logan, Utah 84322-0300, United States
| |
Collapse
|
16
|
Zierkiewicz W, Michalczyk M, Scheiner S. Noncovalent Bonds through Sigma and Pi-Hole Located on the Same Molecule. Guiding Principles and Comparisons. Molecules 2021; 26:1740. [PMID: 33804617 PMCID: PMC8003638 DOI: 10.3390/molecules26061740] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/21/2023] Open
Abstract
Over the last years, scientific interest in noncovalent interactions based on the presence of electron-depleted regions called σ-holes or π-holes has markedly accelerated. Their high directionality and strength, comparable to hydrogen bonds, has been documented in many fields of modern chemistry. The current review gathers and digests recent results concerning these bonds, with a focus on those systems where both σ and π-holes are present on the same molecule. The underlying principles guiding the bonding in both sorts of interactions are discussed, and the trends that emerge from recent work offer a guide as to how one might design systems that allow multiple noncovalent bonds to occur simultaneously, or that prefer one bond type over another.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA;
| |
Collapse
|
17
|
Li Y, Meng L, Zeng Y. Comparison of Anion‐Anion Halogen Bonds with Neutral‐Anion Halogen Bonds in the Gas Phase and Polar Solvents. Chempluschem 2021; 86:232-240. [DOI: 10.1002/cplu.202000734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Indexed: 01/23/2023]
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
| | - Lingpeng Meng
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
| | - Yanli Zeng
- College of Chemistry and Materials Science Hebei Normal University Shijiazhuang 050024 P. R. China
- National Experimental Chemistry Teaching Center Hebei Normal University) Shijiazhuang 050024 P. R. China
| |
Collapse
|
18
|
Ibrahim MAA, Telb EMZ. Comparison of ±σ-hole and ±R˙-hole interactions formed by tetrel-containing complexes: a computational study. RSC Adv 2021; 11:4011-4021. [PMID: 35424365 PMCID: PMC8694216 DOI: 10.1039/d0ra09564h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022] Open
Abstract
For the first time, unconventional ±R˙-hole interactions were unveiled in tetrel-containing complexes. The nature and characteristics of ±R˙-hole interactions were explored relative to their ±σ-hole counterparts for ˙TF3⋯ and W-T-F3⋯B/R˙/A complexes (where T = C, Si, and Ge, W = H and F, B = Lewis bases, R˙ = free radicals, and A = Lewis acids). In an effort to thoroughly investigate such interactions, a plethora of quantum mechanical calculations, including molecular electrostatic potential (MEP), maximum positive electrostatic potential (V s,max), point-of-charge (PoC), interaction energy, symmetry adapted perturbation theory (SAPT), and reduced density gradient-noncovalent interaction (RDG-NCI) calculations, were applied. The most notable findings to emerge from this study are that (i) from the electrostatic perspective, the molecular stabilization energies of ˙TF3 and W-T-F3 monomers became more negative as the Lewis basicity increased, (ii) the most stable complexes were observed for the ones containing Lewis bases, forming -σ-hole and -R˙-hole interactions, and the interaction energies systematically increased in the order H-T-F3⋯B < ˙TF3⋯B < F-T-F3⋯B, (iii) contrariwise, the +σ-hole and +R˙-hole interactions with Lewis acids are more energetically favorable in the order F-T-F3⋯A < ˙TF3⋯A < H-T-F3⋯A, and (iv) generally, the dispersion force plays a key role in stabilizing the tetrel-containing complexes, jointly with the electrostatic and induction forces for the interactions with Lewis bases and acids, respectively. Concretely, the findings presented in this paper add to our understanding of the characteristics and nature of such intriguing interactions.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| | - Ebtisam M Z Telb
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
| |
Collapse
|
19
|
Abstract
The tetrel bond (TB) recruits an element drawn from the C, Si, Ge, Sn, Pb family as electron acceptor in an interaction with a partner Lewis base. The underlying principles that explain this attractive interaction are described in terms of occupied and vacant orbitals, total electron density, and electrostatic potential. These principles facilitate a delineation of the factors that feed into a strong TB. The geometric deformation that occurs within the tetrel-bearing Lewis acid monomer is a particularly important issue, with both primary and secondary effects. As a first-row atom of low polarizability, C is a reluctant participant in TBs, but its preponderance in organic and biochemistry make it extremely important that its potential in this regard be thoroughly understood. The IR and NMR manifestations of tetrel bonding are explored as spectroscopy offers a bridge to experimental examination of this phenomenon. In addition to the most common σ-hole type TBs, discussion is provided of π-hole interactions which are a result of a common alternate covalent bonding pattern of tetrel atoms.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA.
| |
Collapse
|
20
|
Scheiner S. Competition between a Tetrel and Halogen Bond to a Common Lewis Acid. J Phys Chem A 2020; 125:308-316. [DOI: 10.1021/acs.jpca.0c10060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
21
|
McDowell SAC, Wang R, Li Q. Interactions in Model Ionic Dyads and Triads Containing Tetrel Atoms. Molecules 2020; 25:molecules25184197. [PMID: 32937741 PMCID: PMC7570900 DOI: 10.3390/molecules25184197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022] Open
Abstract
The interactions in model ionic YTX3···Z (Y = NC, F, Cl, Br; X = F, Cl, Br, Z = F-, Cl-, Br-, Li+) dyads containing the tetrel atoms, T = C, Si, Ge, were studied using ab initio computational methods, including an energy decomposition analysis, which found that the YTX3 molecules were stabilized by both anions (via tetrel bonding) and cations (via polarization). For the tetrel-bonded dyads, both the electrostatic and polarization forces make comparable contributions to the binding in the C-containing dyads, whereas, electrostatic forces are by far the largest contributor to the binding in the Si- and Ge-containing analogues. Model metastable Li+···NCTCl3···F- (T = C, Si, Ge) triads were found to be lower in energy than the combined energy of the Li+ + NCTCl3 + F- fragments. The pair energies and cooperative energies for these highly polar triads were also computed and discussed.
Collapse
Affiliation(s)
- Sean A. C. McDowell
- Department of Biological and Chemical Sciences, Cave Hill Campus, The University of the West Indies, P.O. Box 64, Bridgetown BB11000, Barbados
- Correspondence: (S.A.C.M.); (Q.L.)
| | - Ruijing Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China;
- Correspondence: (S.A.C.M.); (Q.L.)
| |
Collapse
|
22
|
The interplay and the formation of σ-hole in the π···LiX and pseudo-π···LiX (X = F, Cl and CN) lithium bonds involving unsaturated and homocyclic hydrocarbons. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Yang Q, Yao X, Yang X. Influence of N-Base and O-Base Hybridization on Triel Bonds. ACS OMEGA 2020; 5:21300-21308. [PMID: 32875266 PMCID: PMC7450710 DOI: 10.1021/acsomega.0c03394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
The complexes of TrR3 (Tr = B and Al; R = H, F, Cl, and Br) with three N-bases (NH3, CH2NH, and HCN) and three O-bases (CH3OH, H2CO, and CO) are utilized to explore the hybridization effect of N and O atoms on the strength, properties, and nature of the triel bond. The sp-hybridized O and N atoms form the weakest triel bond, followed by the sp2-hybridized O atom or the sp3-hybridized N atom, and the sp3-hybridized O atom or the sp2-hybridized N atom engages in the strongest triel bond. The hybridization effect is also related to the substituent of TrR3. Most complexes are dominated by electrostatic, with increasing polarization contribution from sp to sp2 to sp3. Although the CO oxygen engages in a weaker triel bond, its carbon atom is a better electron donor and the interaction energy even amounts to -37 kcal/mol in the BH3 complex.
Collapse
|
24
|
An X, Han J. Influence of alkali substituents on the strength, properties, and nature of tetrel bond between TH 3F and pyridine. J Mol Model 2020; 26:224. [PMID: 32778949 DOI: 10.1007/s00894-020-04499-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 01/31/2023]
Abstract
Ab initio calculations have been performed for the complexes of TH3F (T=C, Si, and Ge) with pyridine and its alkali derivatives to study the influence of an alkali substituent on the strength, properties, and nature of tetrel bond. The introduction of an alkali atom into the electron donor has a prominent enhancing effect on the strength of tetrel bond, which depends on the T atom as well as the alkali atom and its substitution position. The enhancing effect becomes larger in the C < Ge < Si, Li < Na < K, and para- < meta- < ortho- patterns. The interaction energy varies in a wide range from 2 to 40 kcal/mol. Both electrostatic and polarization including charge transfer are responsible for the enhancing effect of an alkali atom. The formation of a tetrel bond results in an elongation of F-T bond and a red shift of F-T stretch vibration, which is big enough to be detected with infrared spectroscopy. Electrostatic interaction is dominant in all complexes, while polarization is smaller or larger than dispersion in the complexes of CH3F or TH3F(T=Si and Ge).
Collapse
Affiliation(s)
- Xiulin An
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| | - Jianqu Han
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
25
|
de Oliveira BG, Zabardasti A, do Rego DG, Pour MM. The formation of H···X hydrogen bond, C···X carbon-halide or Si···X tetrel bonds on the silylene-halogen dimers (X = F or Cl): intermolecular strength, molecular orbital interactions and prediction of covalency. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Scheiner S. The ditetrel bond: noncovalent bond between neutral tetrel atoms. Phys Chem Chem Phys 2020; 22:16606-16614. [DOI: 10.1039/d0cp03068f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability of a tetrel atom to serve in the capacity of electron donor in a σ-hole noncovalent bond is tested by quantum calculations.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry
- Utah State University Logan
- Logan
- USA
| |
Collapse
|