1
|
Kitagawa K, Fujihara A, Yatsuhashi T. Charge-Dependent Metastable Dissociations of Multiply Charged Decafluorobiphenyl Formed by Femtosecond Laser Pulses. Mass Spectrom (Tokyo) 2023; 12:A0130. [PMID: 37799935 PMCID: PMC10548501 DOI: 10.5702/massspectrometry.a0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Femtosecond laser ionization is a unique means to produce multiply charged organic molecules in the gas phase. The charge-dependent chemical reactions of such electron-deficient molecules are interesting from both fundamental and applied scientific perspectives. We have reported the production of quadruply charged perfluoroaromatics; however, they were so stable that we cannot obtain information about their chemical reactions. In general, it might be difficult to realize the conflicting objectives of observing multiply charged molecular ion themselves and their metastable dissociations. In this study, we report the first example showing metastable dissociations of several charge states within the measurable time range of a time-of-flight mass spectrometer. Metastable dissociations were analyzed by selecting a precursor ion with a Bradbury-Nielsen ion gate followed by time-of-flight analysis using a reflectron. We obtained qualitative information that triply and quadruply charged decafluorobiphenyl survived at least in the acceleration region but completely decomposed before entering a reflectron. In contrast, three dissociation channels for singly and one for doubly charged molecular ions were discriminated by a reflectron and determined with the help of ion trajectory simulations.
Collapse
Affiliation(s)
- Kosei Kitagawa
- Department of Chemistry, Graduate School of Science, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| | - Akimasa Fujihara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| |
Collapse
|
2
|
Kawaguchi T, Kitagawa K, Toyota K, Kozaki M, Okada K, Nakashima N, Yatsuhashi T. Smallest Organic Tetracation in the Gas Phase: Stability of Multiply Charged Diiodoacetylene Produced in Intense Femtosecond Laser Fields. J Phys Chem A 2021; 125:8014-8024. [PMID: 34491746 DOI: 10.1021/acs.jpca.1c06390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coulomb explosion imaging, which is the reconstruction of a molecular structure by measuring the three-dimensional momenta of atomic ions formed by a Coulomb explosion of multiply charged molecular cations (MMCs), has been utilized widely. In contrast, intact MMCs, whose properties and reactions are interesting from both fundamental and applied scientific perspectives, themselves have been little explored to date. This study demonstrates that the four-atom molecule diiodoacetylene (DIA) can survive as a long-lived species in the gas phase after the removal of four electrons in intense femtosecond laser fields. The electron configurations of the equilibrium structures of the electronic ground states calculated by the complete active space self-consistent field (CASSCF) method reveal the stability of multiply charged DIA. The dissociation energies are estimated to be 3.01, 3.59, 2.57, 1.82, and 1.61 eV for neutral, cation radical, dication, trication radical, and tetracation, respectively. A fairly deep potential well suggests that a DIA tetracation is metastable toward dissociation, whereas the repulsive potential of a pentacation radical confirms its absence in the mass spectrum. With their sufficiently long lifetimes, minimum number of atoms, and simple dissociation paths, DIA MMCs are promising candidates for further experimental and theoretical investigations of multiply charged ion chemistry.
Collapse
Affiliation(s)
- Takashi Kawaguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Kosei Kitagawa
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Kazuo Toyota
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Masatoshi Kozaki
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Keiji Okada
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Nobuaki Nakashima
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan
| |
Collapse
|