1
|
Ma Y. Computational Research on Ag(I)-Catalyzed Cubane Rearrangement: Mechanism, Metal and Counteranion Effect, Ligand Engineering, and Post-Transition-State Desymmetrization. J Org Chem 2024; 89:3430-3440. [PMID: 38375633 DOI: 10.1021/acs.joc.3c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Ag(I) salts have demonstrated superior catalytic activity in the cubane-cuneane rearrangement. This research presents a comprehensive mechanistic investigation using high-level computations. The reaction proceeds via oxidative addition (OA) of Ag(I) to the C-C bond, followed by C-Ag bond cleavage and subsequent dynamically concerted carbocation rearrangement. The OA of Ag(I) exhibits significant more electrophilic nature than classical transition metal-induced OA, and the superior catalytic activity of Ag(I) is attributed to the accessibility of a highly electrophilic "bare" Ag+ center and a relatively weak Ag-C bond. However, the highly Lewis acidic nature of the Ag(I) center limits the substrate scope. To address this problem, ligand and counteranion screening was conducted, revealing that chiral biarylether ligands in combination with BF4- as the counteranion offer both enhanced reactivity and improved chemoselectivity while suppressing the Lewis acidity. Additionally, quasi-classical molecular dynamics simulations indicate the possibility of a novel desymmetrization pathway through post-transition-state dynamics in the biarylether-Ag(I)-BF4- system, thereby providing a potential avenue for enantioselective cuneane synthesis.
Collapse
Affiliation(s)
- Yumiao Ma
- BSJ Institute, Haidian, Beijing 100084, People's Republic of China
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou City, Zhejiang Province 310003, People's Republic of China
| |
Collapse
|
2
|
Fujiwara K, Nagasawa S, Maeyama R, Segawa R, Hirasawa N, Hirokawa T, Iwabuchi Y. Biological Evaluation of Isosteric Applicability of 1,3-Substituted Cuneanes as m-Substituted Benzenes Enabled by Selective Isomerization of 1,4-Substituted Cubanes. Chemistry 2024; 30:e202303548. [PMID: 38012076 DOI: 10.1002/chem.202303548] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
We herein evaluate a biological applicability of 1,3-substituted cuneanes as an isostere of m-substituted benzenes based on its structural similarity. An investigation of a method to obtain 1,3-substituted cuneanes by selective isomerization of 1,4-substituted cubanes enables this attempt by giving a key synthetic step to obtain a cuneane analogs of pharmaceuticals having m-substituted benzene moiety. Biological evaluation of the synthesized analogs and in silico study of the obtained result revealed a potential usage of cuneane skeleton in medicinal chemistry.
Collapse
Affiliation(s)
- Kan Fujiwara
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryusei Maeyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Ryosuke Segawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Japan
| |
Collapse
|
3
|
Son JY, Aikonen S, Morgan N, Harmata AS, Sabatini JJ, Sausa RC, Byrd EFC, Ess DH, Paton RS, Stephenson CRJ. Exploring Cuneanes as Potential Benzene Isosteres and Energetic Materials: Scope and Mechanistic Investigations into Regioselective Rearrangements from Cubanes. J Am Chem Soc 2023; 145:16355-16364. [PMID: 37486221 PMCID: PMC10529534 DOI: 10.1021/jacs.3c03226] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Cuneane is a strained hydrocarbon that can be accessed via metal-catalyzed isomerization of cubane. The carbon atoms of cuneane define a polyhedron of the C2v point group with six faces─two triangular, two quadrilateral, and two pentagonal. The rigidity, strain, and unique exit vectors of the cuneane skeleton make it a potential scaffold of interest for the synthesis of functional small molecules and materials. However, the limited previous synthetic efforts toward cuneanes have focused on monosubstituted or redundantly substituted systems such as permethylated, perfluorinated, and bis(hydroxymethylated) cuneanes. Such compounds, particularly rotationally symmetric redundantly substituted cuneanes, have limited potential as building blocks for the synthesis of complex molecules. Reliable, predictable, and selective syntheses of polysubstituted cuneanes bearing more complex substitution patterns would facilitate the study of this ring system in myriad applications. Herein, we report the regioselective, AgI-catalyzed isomerization of asymmetrically 1,4-disubstituted cubanes to cuneanes. In-depth DFT calculations provide a charge-controlled regioselectivity model, and direct dynamics simulations indicate that the nonclassical carbocation invoked is short-lived and dynamic effects augment the charge model.
Collapse
Affiliation(s)
- Jeong-Yu Son
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Santeri Aikonen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nathan Morgan
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Alexander S. Harmata
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse J. Sabatini
- US Army Research Laboratory, Energetics Technology Branch, Aberdeen Proving Ground, MD 21005, United States
| | - Rosario C. Sausa
- DEVCOM Army Research Laboratory, Energetics Simulation & Modeling Branch, Aberdeen Proving Ground, MD 21005, United States
| | - Edward F. C. Byrd
- DEVCOM Army Research Laboratory, Energetics Simulation & Modeling Branch, Aberdeen Proving Ground, MD 21005, United States
| | - Daniel H. Ess
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert S. Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Smith E, Jones KD, O'Brien L, Argent SP, Salome C, Lefebvre Q, Valery A, Böcü M, Newton GN, Lam HW. Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. J Am Chem Soc 2023. [PMID: 37478562 PMCID: PMC10401713 DOI: 10.1021/jacs.3c03207] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.
Collapse
Affiliation(s)
- Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Kieran D Jones
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | - Mina Böcü
- SpiroChem AG, 4058 Basel, Switzerland
| | - Graham N Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
5
|
A Ten-Year Perspective on Twist-Bend Nematic Materials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092689. [PMID: 35566040 PMCID: PMC9102178 DOI: 10.3390/molecules27092689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022]
Abstract
The discovery of the twist-bend nematic phase (NTB) is a milestone within the field of liquid crystals. The NTB phase has a helical structure, with a repeat length of a few nanometres, and is therefore chiral, even when formed by achiral molecules. The discovery and rush to understand the rich physics of the NTB phase has provided a fresh impetus to the design and characterisation of dimeric and oligomeric liquid crystalline materials. Now, ten years after the discovery of the NTB phase, we review developments in this area, focusing on how molecular features relate to the incidence of this phase, noting the progression from simple symmetrical dimeric materials towards complex oligomers, non-covalently bonded supramolecular systems.
Collapse
|
6
|
Arakawa Y, Komatsu K, Ishida Y, Igawa K, Tsuji H. Carbonyl- and thioether-linked cyanobiphenyl-based liquid crystal dimers exhibiting twist-bend nematic phases. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Pocock EE, Mandle RJ, Goodby JW. Experimental and Computational Study of a Liquid Crystalline Dimesogen Exhibiting Nematic, Twist-Bend Nematic, Intercalated Smectic, and Soft Crystalline Mesophases. Molecules 2021; 26:532. [PMID: 33498518 PMCID: PMC7864162 DOI: 10.3390/molecules26030532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
Liquid crystalline dimers and dimesogens have attracted significant attention due to their tendency to exhibit twist-bend modulated nematic (NTB) phases. While the features that give rise to NTB phase formation are now somewhat understood, a comparable structure-property relationship governing the formation of layered (smectic) phases from the NTB phase is absent. In this present work, we find that by selecting mesogenic units with differing polarities and aspect ratios and selecting an appropriately bent central spacer we obtain a material that exhibits both NTB and intercalated smectic phases. The higher temperature smectic phase is assigned as SmCA based on its optical textures and X-ray scattering patterns. A detailed study of the lower temperature smectic ''X'' phase by optical microscopy and SAXS/WAXS demonstrates this phase to be smectic, with an in-plane orthorhombic or monoclinic packing and long (>100 nm) out of plane correlation lengths. This phase, which has been observed in a handful of materials to date, is a soft-crystal phase with an anticlinic layer organisation. We suggest that mismatching the polarities, conjugation and aspect ratios of mesogenic units is a useful method for generating smectic forming dimesogens.
Collapse
Affiliation(s)
- Emily E. Pocock
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK;
| | - Richard J. Mandle
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK;
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - John W. Goodby
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK;
| |
Collapse
|