1
|
Pramanik A, Das R, Jyoti Boruah P, Majumder S, Mohanta S. A very rare fluorescent chemosensor of zinc(II) exhibiting AIEE, ESIPT and TICT: Spectroscopic, crystallographic and theoretical exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123780. [PMID: 38142491 DOI: 10.1016/j.saa.2023.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
The basic systems in this study are HL (1; 1:2 condensation product of 2,6-diformyl-4-ethylphenol and o-anisidine) and its ZnII and CdII complexes of composition [ZnII(LH)Cl2]·CH3OH (2) and [CdII(LH)Cl2] (3), all of which are synthesized and characterized by CHN elemental analyses, single crystal X-ray crystallography, powder X-ray diffraction (PXRD) and fourier transform infrared (FT-IR) spectrum. It has been established from the following experimental and theoretical studies that 1 is a fluorescent turn on sensor of ZnII ion and it exhibits all of excited state intramolecular proton transfer (ESIPT), photoinduced electron transfer (PET), twisted intramolecular charge transfer (TICT) and aggregation induced enhanced emission (AIEE): (i) Detailed absorption and emission (steady state / time resolved) studies in various single solvents, in solvent mixtures, with pH variation, with various single metal ions, with mixtures of metal ions, on varying temperature and on varying viscosity; (ii) dynamic light scattering (DLS) and scanning electron microscopy (SEM) in solvent mixtures; (iii) density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations in ground and excites states of 1-3. It is shown that 1 can be efficaciously applied in inkless writing with the "write - erase - write" facility. The mechanisms/reasons of the observed properties have been addressed. The difference in fluorescence of ZnII and CdII complexes, unusual case of crystal structures of probe and complexes with ZnII and CdII, unusual features in the structures of 2 and 3 as well as a structure-property correlation have been discussed.
Collapse
Affiliation(s)
- Abhishek Pramanik
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
| | - Rampada Das
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
| | - Palash Jyoti Boruah
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, Meghalaya, 793003, India
| | - Samit Majumder
- Department of Chemistry, Bhairab Ganguly College, Feeder Road, Belghoria, Kolkata 700056, West Bengal, India.
| | - Sasankasekhar Mohanta
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India.
| |
Collapse
|
2
|
Guo X, Zhou L, Liu X, Tan G, Yuan F, Nezamzadeh-Ejhieh A, Qi N, Liu J, Peng Y. Fluorescence detection platform of metal-organic frameworks for biomarkers. Colloids Surf B Biointerfaces 2023; 229:113455. [PMID: 37473653 DOI: 10.1016/j.colsurfb.2023.113455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sensitive and selective detection of biomarkers is crucial in the study and early diagnosis of diseases. With the continuous development of biosensing technologies, fluorescent biosensors based on metal-organic frameworks have attracted increasing attention in the field of biomarker detection due to the combination of the advantages of MOFs, such as high specific surface area, large porosity, and structure with tunable functionality and the technical simplicity, sensitivity and efficiency and good applicability of fluorescent detection techniques. Therefore, researchers must understand the fluorescence response mechanism of such fluorescent biosensors and their specific applications in this field. Of all biomarkers applicable to such sensors, the chemical essence of nucleic acids, proteins, amino acids, dopamine, and other small molecules account for about a quarter of the total number of studies. This review systematically elaborates on four fluorescence response mechanisms: metal-centered emission (MC), ligand-centered emission (LC), charge transfer (CT), and guest-induced luminescence change (GI), presenting their applications in the detection of nucleic acids, proteins, amino acids, dopamine, and other small molecule biomarkers. In addition, the current challenges of MOFs-based fluorescent biosensors are also discussed, and their further development prospects are concerned.
Collapse
Affiliation(s)
- Xuanran Guo
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Luyi Zhou
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xuezhang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Guijian Tan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Fei Yuan
- College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | | | - Na Qi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China; Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Yanqiong Peng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
4
|
Purushothaman P, Karpagam S. Thiophene-Appended Benzothiazole Compounds for Ratiometric Detection of Copper and Cadmium Ions with Comparative Density Functional Theory Studies and Their Application in Real-Time Samples. ACS OMEGA 2022; 7:41361-41369. [PMID: 36406525 PMCID: PMC9670728 DOI: 10.1021/acsomega.2c05157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
A thirst for the development of a simple fluorescence probe for enhanced sensing application has been achieved by synthesizing a stupendous thiophene-appended benzothiazole-conjugated compound L2. The synthesized compound L2 was characterized using nuclear magnetic resonance and mass spectrometry techniques. Furthermore, a photophysical property of L1 and L2 reveals the enhanced emission spectrum of L2 because of a restricted spin-orbital coupling as a result of increased conjugation compared to the ligand L1. Therefore, comparative studies were undertaken for L1 and L2. Henceforth, L2 was deployed for the ratiometric detection of Cd2+ ions in THF:water and L1 for the detection of Cu2+ ions in THF medium. The chemosensor L2 shows an outstanding water tolerance up to 60% and is stable between pH 2 and 7. This level of water tolerance and stability make L2 a suitable probe for analyzing real-time and biological samples. While the cadmium ion was added to L2, there was a significant red shift in emission from 496 to 549 nm, which indicates the controlled ICT due to complex formation. The metal-ligand complexation was also confirmed by noticing a decreased band gap of metal complex compared to the ligand as calculated using Tauc's plot with solid-phase UV data. The stoichiometric ratio was obtained by Job's plot that exhibited a 1:1 ratio of L2 and Cd2+ ions, and the limit of detection (LOD) was found to be 2.25 nM by the photoluminescence spectroscopic technique. The fluorescence lifetime of both L2 and L2-Cd2+ was found to be 58.3 ps and 0.147 ns, respectively. Alongside, the colorimetric-assisted ratiometric detection of Cu2+ by L1 with 1:2 stoichiometric ratio having an LOD of 1.06 × 10-7 M was also performed. Furthermore, the practical applicability of the probe L2 in sensing cadmium was tested in sewage water and vegetable extract; the recovery was approximately 98 and 99%, respectively. The experimental data were supported by theoretical investigation of structures of L1, L2, L1-Cu2+ , and L2-Cd2+ , complex formation, charge transfer mechanism, and band gap measurements done by quantum chemical density functional theory calculations.
Collapse
|
5
|
Singh G, Diksha, Mohit, Suman, Sushma, Devi A, Gupta S, Espinosa-Ruíz C, Angeles Esteban M. Pyridine derived organosilatranes and their silica nanoparticles as “Turn-on” fluorescence sensor for selective detection of Zn2+ ions and their cytotoxicity evaluation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
A DFT and experimental study of the spectroscopic and hydrolytic degradation behaviour of some benzylideneanilines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Bag R, Sikdar Y, Sahu S, Islam MM, Mandal S, Goswami S. Benzimidazole–acid hydrazide Schiff–Mannich combo ligands enable nano–molar detection of Zn 2+ via fluorescence turn–on mode from semi–aqueous medium, HuH–7 cells, and plants. NEW J CHEM 2022. [DOI: 10.1039/d2nj02875a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have synthesized two unsymmetrical and dipodal Schiff–Mannich combo ligands, benzoic acid (3–benzoimidazol–1–ylmethyl–2–hydroxy–5–methyl–benzylidene)–hydrazide (H2BBH) and the hydroxyl analogue, 2–hydroxy–benzoic acid (3–benzoimidazol–1–ylmethyl–2–hydroxy–5–methyl–benzylidene)–hydrazide (H3BSH) for selective detection of Zn2+ in semi–aqueous...
Collapse
|
8
|
Dasgupta S, Banerjee S, Das S, Datta A. From fluorogens to fluorophores by elucidation and suppression of ultrafast excited state processes of a Schiff base. Phys Chem Chem Phys 2021; 23:19494-19502. [PMID: 34524318 DOI: 10.1039/d1cp02540f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Strategies have been explored for developing strongly fluorescent species out of a weakly fluorescent Schiff base, 2-(((pyridin-2-ylmethyl)imino)methyl)phenol (salampy). The locally excited enolic state of salampy undergoes an intramolecular proton transfer with a time constant of ca. 200 fs. The emissive cis keto state thus formed decays completely within 50 ps. Its fast decay and miniscule fluorescence quantum yield are attributed to efficient non-radiative channels associated with conformational relaxation. The anionic form, salampy-, has a significantly longer fluorescence lifetime of 800 ps. Its emissive state evolves in tens of picoseconds, from the locally excited state, by solvent and conformational relaxation. Both the neutral and anionic forms have a fluorescence lifetime of about 6 ns at 77 K, a temperature at which all activated nonradiative channels are blocked. This lifetime is similar to that obtained at room temperature, upon rigidification of the anion by complexation with Zn2+. Two such complexes have been studied. The first is binuclear, with acetate bridge between the two Zn2+ ions. The second, with ClO4- as the counterion, is mononuclear with two salampy ligands ligating the metal ion. Unlike a previous report on a different Schiff base, in which the ligands are π-stacked in its dimeric Zn2+ complex, no additional nonradiative deactivation pathway opens up in the Zn complexes of salampy, which are devoid of such stacking. The complex of salampy with Al3+ has an even longer fluorescence lifetime of 9 ns, indicating a greater degree of rigidification and consequent suppression of nonradiative processes.
Collapse
Affiliation(s)
- Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Shrobona Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Rd, Bhauri, Madhya Pradesh 462066, India
| | - Sharmistha Das
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Electronically excited state structures and stabilities of organic small molecules: A DFT study of triphenylamine derivatives. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Shi CT, Huang ZY, Wu AB, Hu YX, Wang NC, Zhang Y, Shu WM, Yu WC. Recent progress in cadmium fluorescent and colorimetric probes. RSC Adv 2021; 11:29632-29660. [PMID: 35479541 PMCID: PMC9040829 DOI: 10.1039/d1ra05048f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal which exists widely in industrial and agricultural production and can induce a variety of diseases in organisms. Therefore, its detection is of great significance in the fields of biology, environment and medicine. Fluorescent probe has been a powerful tool for cadmium detection because of its convenience, sensitivity, and bioimaging capability. In this paper, we reviewed 98 literatures on cadmium fluorescent sensors reported from 2017 to 2021, classified them according to different fluorophores, elaborated the probe design, application characteristics and recognition mode, summarized and prospected the development of cadmium fluorescent and colorimetric probes. We hope to provide some help for researchers to design cadmium fluorescent probes with higher selectivity, sensitivity and practicability. Cadmium is a heavy metal which exists widely in industrial and agricultural production and can induce a variety of diseases in organisms.![]()
Collapse
Affiliation(s)
- Chun-Tian Shi
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Zhi-Yu Huang
- Key Laboratory of Textile Fibers and Products, Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University Wuhan Hubei People's Republic of China
| | - Ai-Bin Wu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Yan-Xiong Hu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Ning-Chen Wang
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Ying Zhang
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China
| | - Wen-Ming Shu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| | - Wei-Chu Yu
- School of Chemistry and Environmental Engineering, Yangtze University Jingzhou Hubei People's Republic of China .,Unconventional Oil and Gas Collaborative Innovation Center, Yangtze University Jingzhou Hubei People's Republic of China
| |
Collapse
|