1
|
Samrout OE, Berlier G, Lambert JF. Amino Acid Polymerization on Silica Surfaces. Chempluschem 2024; 89:e202300642. [PMID: 38226922 DOI: 10.1002/cplu.202300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The polymerization of unactivated amino acids (AAs) is an important topic because of its applications in various fields including industrial medicinal chemistry and prebiotic chemistry. Silica as a promoter for this reaction, is of great interest owing to its large abundance and low cost. The amide/peptide bond synthesis on silica has been largely demonstrated but suffers from a lack of knowledge regarding its reaction mechanism, the key parameters, and surface features that influence AA adsorption and reactivity, the selectivity of the reaction product, the role of water in the reaction, etc. The present review addresses these problems by summarizing experimental and modeling results from the literature and attempts to rationalize some apparent divergences in published results. After briefly presenting the main types of silica surface sites and other relevant macroscopic features, we discuss the different deposition procedures of AAs, whose importance is often neglected. We address the possible AA adsorption mechanisms including covalent grafting and H-bonding and show that they are highly dependent on silanol types and density. We then consider how the adsorption mechanisms determine the occurrence and outcome of AA condensation (formation of cyclic dimers or of long linear chains), and outline some recent results that suggest significant polymerization selectivity in systems containing several AAs, as well as the formation of specific elements of secondary structure in the growing polypeptide chains.
Collapse
Affiliation(s)
- Ola El Samrout
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Gloria Berlier
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université Place Jussieu, 75005, Paris, France
| |
Collapse
|
2
|
Aguiar TQ, Domingues L. Recombinant protein purification and immobilization strategies based on peptides with dual affinity to iron oxide and silica. Biotechnol J 2023; 18:e2300152. [PMID: 37478356 DOI: 10.1002/biot.202300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
Iron oxide and silica-based materials have emerged as attractive protein purification and immobilization matrices. His6 has been reported as an effective affinity tag for both iron oxide and silica. Here, the silica-binding tags CotB1p and Car9 were shown to work as effectively as iron oxide-binding tags. Using EGFP as a model protein, commercially available bare iron oxide (BIONs) or silicon dioxide (BSiNs) nanoparticles as low-cost purification/immobilization matrices, and non-hazardous and mild binding and elution conditions, adsorption and desorption studies were performed with lysates from Escherichia coli-producing cells to compare the performance of these dual-affinity tags. Under the conditions tested, the His6 tag stood out as the best-performing tag, followed by CotB1p. Our findings concluded the promising combination of these tags, BIONs and BSiNs for one-step purification of recombinant proteins, and two-step purification and immobilization of recombinant proteins without intermediate buffer exchange. This proof of concept work set the ground for future evaluation of these purification and immobilization strategies using other proteins with different properties, which will be of interest to expand their utility and applicability.
Collapse
Affiliation(s)
- Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Muehlbauer LK, Jen A, Zhu Y, He Y, Shishkova E, Overmyer KA, Coon JJ. Rapid Multi-Omics Sample Preparation for Mass Spectrometry. Anal Chem 2023; 95:659-667. [PMID: 36594155 PMCID: PMC10026941 DOI: 10.1021/acs.analchem.2c02042] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multi-omics analysis is a powerful and increasingly utilized approach to gain insight into complex biological systems. One major hindrance with multi-omics, however, is the lengthy and wasteful sample preparation process. Preparing samples for mass spectrometry (MS)-based multi-omics involves extraction of metabolites and lipids with organic solvents, precipitation of proteins, and overnight digestion of proteins. These existing workflows are disparate and laborious. Here, we present a simple, efficient, and unified approach to prepare lipids, metabolites, and proteins for MS analysis. Our approach, termed the Bead-enabled Accelerated Monophasic Multi-omics (BAMM) method, combines an n-butanol-based monophasic extraction with unmodified magnetic beads and accelerated protein digestion. We demonstrate that the BAMM method affords comparable depth, quantitative reproducibility, and recovery of biomolecules as state-of-the-art multi-omics methods (e.g., Matyash extraction and overnight protein digestion). However, the BAMM method only requires about 3 h to perform, which saves 11 steps and 19 h on average compared to published multi-omics methods. Furthermore, we validate the BAMM method for multiple sample types and formats (biofluid, culture plate, and pellet) and show that in all cases, it produces high biomolecular coverage and data quality.
Collapse
Affiliation(s)
- Laura K. Muehlbauer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yunyun Zhu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yuchen He
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Katherine A. Overmyer
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
4
|
Abadian H, Cornette P, Costa D, Mezzetti A, Gervais C, Lambert JF. Leucine on Silica: A Combined Experimental and Modeling Study of a System Relevant for Origins of Life, and the Role of Water Coadsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8038-8053. [PMID: 35737817 DOI: 10.1021/acs.langmuir.2c00841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leucine on silica constitutes an interesting system from the point of view of origins of life studies since leucine coadsorbed on SiO2 together with glutamic acid can give rise to rather long linear polypeptides upon activation. It is also an ideal system to test methods of molecular characterization of biomolecules deposited on mineral surfaces since it combines a small-scale model of peptides and proteins, which are among the most important components of biodevices, with one of the most widely used inorganic materials. We have deposited l-leucine on a high surface fumed silica in the submonolayer range and characterized it by a multipronged approach including macroscopic information (thermogravimetry, X-ray diffraction), in situ spectroscopic methods (IR, multinuclear solid-state NMR including single-pulse and CP-MAS, 2-D HETCOR), and molecular modeling by density functional theory (DFT), including calculation of NMR parameters. Specific information can be obtained on the adsorption and interaction mechanism. Leucine is rather strongly adsorbed without any covalent bonds, through the formation of a specific lattice of H-bonds that often involve coadsorbed water molecules. Its state is indeed strongly dependent on the drying procedure: insufficient drying results in liquid-like surroundings for the leucine functional groups, while vacuum drying only retains a limited number of waters (of the order of 5 per leucine molecule). The most stable models have zwitterionic leucine interacting directly with surface silanols through their ammonium group, while the carboxylate interacts through bridging waters. Experimental NMR chemical shifts are satisfactorily predicted for these models, and leucine can be viewed as a probe for specific groups of surface sites known as silanol nests.
Collapse
Affiliation(s)
- Hagop Abadian
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP, UMR 7574 CNRS), Case courrier 174, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Pauline Cornette
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Dominique Costa
- Institut de Recherche de Chimie Paris (IRCP, UMR8247 CNRS), 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP, UMR 7574 CNRS), Case courrier 174, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
5
|
Freitas AI, Domingues L, Aguiar TQ. Bare silica as an alternative matrix for affinity purification/immobilization of His-tagged proteins. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Bag S, Konrad M, Schlöder T, Friederich P, Wenzel W. Fast Generation of Machine Learning-Based Force Fields for Adsorption Energies. J Chem Theory Comput 2021; 17:7195-7202. [PMID: 34623804 DOI: 10.1021/acs.jctc.1c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adsorption and desorption of molecules are key processes in extraction and purification of biomolecules, engineering of drug carriers, and designing of surface-specific coatings. To understand the adsorption process on the atomic scale, state-of-the-art quantum mechanical and classical simulation methodologies are widely used. However, studying adsorption using a full quantum mechanical treatment is limited to picoseconds simulation timescales, while classical molecular dynamics simulations are limited by the accuracy of the existing force fields. To overcome these challenges, we propose a systematic way to generate flexible, application-specific highly accurate force fields by training artificial neural networks. As a proof of concept, we study the adsorption of the amino acid alanine on graphene and gold (111) surfaces and demonstrate the force field generation methodology in detail. We find that a molecule-specific force field with Lennard-Jones type two-body terms incorporating the 3rd and 7th power of the inverse distances between the atoms of the adsorbent and the surfaces yields optimal results, which is surprisingly different from typical Lennard-Jones potentials used in traditional force fields. Furthermore, we present an efficient and easy-to-train machine learning model that incorporates system-specific three-body (or higher order) interactions that are required, for example, for gold surfaces. Our final machine learning-based force field yields a mean absolute error of less than 4.2 kJ/mol at a speed-up of ∼105 times compared to quantum mechanical calculation, which will have a significant impact on the study of adsorption in different research areas.
Collapse
Affiliation(s)
- Saientan Bag
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Manuel Konrad
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Tobias Schlöder
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Pascal Friederich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany.,Institute of Theoretical Informatics (ITI), Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, Karlsruhe 76131, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
7
|
Rauwolf S, Steegmüller T, Schwaminger SP, Berensmeier S. Purification of a peptide tagged protein via an affinity chromatographic process with underivatized silica. Eng Life Sci 2021; 21:549-557. [PMID: 34690628 PMCID: PMC8518568 DOI: 10.1002/elsc.202100019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 11/11/2022] Open
Abstract
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low-cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high-purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag's arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS-PAGE and RP-HPLC. The equilibrium binding capacity of the fusion protein GFP-(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One-step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | - Tobias Steegmüller
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| | | | - Sonja Berensmeier
- Department of Mechanical EngineeringTechnical University of MunichMunichGermany
| |
Collapse
|
8
|
Rauwolf S, Bag S, Rouqueiro R, Schwaminger SP, Dias-Cabral AC, Berensmeier S, Wenzel W. Insights on Alanine and Arginine Binding to Silica with Atomic Resolution. J Phys Chem Lett 2021; 12:9384-9390. [PMID: 34551250 DOI: 10.1021/acs.jpclett.1c02398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions of biomolecules with inorganic oxide surfaces such as silica in aqueous solutions are of profound interest in various research fields, including chemistry, biotechnology, and medicine. While there is a general understanding of the dominating electrostatic interactions, the binding mechanism is still not fully understood. Here, chromatographic zonal elution and flow microcalorimetry experiments were combined with molecular dynamic simulations to describe the interaction of different capped amino acids with the silica surface. We demonstrate that ion pairing is the dominant electrostatic interaction. Surprisingly, the interaction strength is more dependent on the repulsive carboxy group than on the attracting amino group. These findings are essential for conducting experimental and simulative studies on amino acids when transferring the results to biomolecule-surface interactions.
Collapse
Affiliation(s)
- Stefan Rauwolf
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Saientan Bag
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rodrigo Rouqueiro
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sebastian Patrick Schwaminger
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Ana Cristina Dias-Cabral
- Department of Chemistry, CICS-UBI Health Science Research Center, University Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Sonja Berensmeier
- Department Mechanical Engineering, Bioseparation Engineering Group, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching, Germany
| | - Wolfgang Wenzel
- Institute for Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Bag S, Rauwolf S, Schwaminger SP, Wenzel W, Berensmeier S. DNA Binding to the Silica: Cooperative Adsorption in Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5902-5908. [PMID: 33951395 DOI: 10.1021/acs.langmuir.1c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption and desorption of nucleic acid to a solid surface is ubiquitous in various research areas like pharmaceutics, nanotechnology, molecular biology, and molecular electronics. In spite of this widespread importance, it is still not well understood how the negatively charged deoxyribonucleic acid (DNA) binds to the negatively charged silica surface in an aqueous solution. In this article, we study the adsorption of DNA to the silica surface using both modeling and experiments and shed light on the complicated binding (DNA to silica) process. The binding agent mediated DNA adsorption was elegantly captured by cooperative Langmuir model. Bulk-depletion experiments were performed to conclude the necessity of a positively charged binding agent for efficient DNA binding, which complements the findings from the model. A profound understanding of DNA binding will help to tune various processes for efficient nucleic acid extraction and purification. However, this work goes beyond the DNA binding and can shed light on other binding agent mediated surface-surface, surface-molecule, molecule-molecule interaction.
Collapse
Affiliation(s)
- Saientan Bag
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Rauwolf
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| |
Collapse
|
10
|
Schwaminger SP, Brammen MW, Zunhammer F, Däumler N, Fraga-García P, Berensmeier S. Iron Oxide Nanoparticles: Multiwall Carbon Nanotube Composite Materials for Batch or Chromatographic Biomolecule Separation. NANOSCALE RESEARCH LETTERS 2021; 16:30. [PMID: 33569639 PMCID: PMC7876204 DOI: 10.1186/s11671-021-03491-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Carbon-based materials are the spearhead of research in multiple fields of nanotechnology. Moreover, their role as stationary phase in chromatography is gaining relevance. We investigate a material consisting of multiwall carbon nanotubes (CNTs) and superparamagnetic iron oxide nanoparticles towards its use as a mixed-mode chromatography material. The idea is to immobilize the ion exchange material iron oxide on CNTs as a stable matrix for chromatography processes without a significant pressure drop. Iron oxide nanoparticles are synthesized and used to decorate the CNTs via a co-precipitation route. They bind to the walls of oxidized CNTs, thereby enabling to magnetically separate the composite material. This hybrid material is investigated with transmission electron microscopy, magnetometry, X-ray diffraction, X-ray photoelectron and Raman spectroscopy. Moreover, we determine its specific surface area and its wetting behavior. We also demonstrate its applicability as chromatography material for amino acid retention, describing the adsorption and desorption of different amino acids in a complex porous system surrounded by aqueous media. Thus, this material can be used as chromatographic matrix and as a magnetic batch adsorbent material due to the iron oxide nanoparticles. Our work contributes to current research on composite materials. Such materials are necessary for developing novel industrial applications or improving the performance of established processes.
Collapse
Affiliation(s)
- Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| | - Markus W Brammen
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Florian Zunhammer
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Nicklas Däumler
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Paula Fraga-García
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
11
|
Kravchenko O, Sutherland TC, Heyne B. Photobleaching of Erythrosine B in Aqueous Environment Investigation Beyond pH †. Photochem Photobiol 2021; 98:49-56. [PMID: 33565140 DOI: 10.1111/php.13396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/06/2021] [Indexed: 01/11/2023]
Abstract
In the scientific literature, the term aqueous environment is loosely employed as it encompasses a broad range of different buffering agents. While there is an increasing number of experimental evidence that point toward specific buffer effects extending far beyond pH, the impact of the chemical nature of the buffering ions is often disregarded, especially in photochemical studies. Herein, we highlighted the importance of buffer specific effects on both the photobleaching and the singlet oxygen quantum yields of a dye in aqueous environments. For this study, we chose erythrosine B (EB) as our model photosensitizer as its photochemistry and photobleaching are well documented in the literature. We followed EB's photobleaching via absorption spectroscopy in four different aqueous solvents, including pure water, phosphate, Tris and HEPES buffer. These buffer systems were selected because they are commonly used in biochemical and biological applications. Our results show that specific buffer effects cannot be neglected. Indeed, the singlet oxygen quantum yield for EB is significantly different in HEPES compared to the other solvents. Furthermore, we showed that EB's photoproduct is highly dependent on the nature of the chemical buffer being used.
Collapse
Affiliation(s)
- Olga Kravchenko
- Chemistry Department, University of Calgary, Calgary, AB, Canada
| | | | - Belinda Heyne
- Chemistry Department, University of Calgary, Calgary, AB, Canada
| |
Collapse
|