1
|
Wang X, Quan M, Yao H, Pang XY, Ke H, Jiang W. Switchable bifunctional molecular recognition in water using a pH-responsive Endo-functionalized cavity. Nat Commun 2022; 13:2291. [PMID: 35484144 PMCID: PMC9051166 DOI: 10.1038/s41467-022-30012-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
The construction of water-soluble synthetic hosts with a stimuli-responsive endo-functionalized cavity is challenging. These hosts feature a switchable cavity and may bring new properties to the fields of self-assembly, molecular machines, and biomedical sciences. Herein, we report a pair of water-soluble naphthotubes with a pH-responsive endo-functionalized cavity. The inward-directing secondary amine group of the hosts can be protonated and deprotonated. Thus, the hosts have different cavity features at the two states and show drastically different binding preference and selectivity in water. We reveal that the binding difference of the two host states is originated from the differences in charge repulsion, hydrogen bonding and the hydrophobic effects. Moreover, the guest binding can be easily switched in a ternary mixture with two guest molecules by adjusting the pH value of the solution. These pH-responsive hosts may be used for the construction of smart self-assembly systems and water-soluble molecular machines.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Hua Ke
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Zhou H, Pang XY, Wang X, Yao H, Yang LP, Jiang W. Biomimetic Recognition of Quinones in Water by an Endo-Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021; 60:25981-25987. [PMID: 34569134 DOI: 10.1002/anie.202112267] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2021] [Indexed: 12/27/2022]
Abstract
Selective molecular recognition in water is the foundation of numerous biological functions but is a challenge for most synthetic hosts. We employ the concept of endo-functionalized cavity and the strategy of simultaneous construction to address this issue. The concept and the strategy were demonstrated in the construction of a biomimetic host for selectively recognizing quinones in water. The host was synthesized by joining two pieces of bent anthracene dimer through amide bond formation, affording a deep hydrophobic cavity and inward-directing hydrogen bonding sites. The host can recognize quinones over their close analogues in water, and its association affinity to p-benzoquinone is the highest among all the known hosts and is even comparable to that of the bioreceptor. The binding with an anthraquinone reaches nanomolar affinity. Shielded hydrogen bonding, C-H⋅⋅⋅π, and charge transfer interactions, and the hydrophobic effect are responsible for the high binding affinity and selectivity.
Collapse
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
3
|
Zhou H, Pang X, Wang X, Yao H, Yang L, Jiang W. Biomimetic Recognition of Quinones in Water by an
Endo
‐Functionalized Cavity with Anthracene Sidewalls. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xin‐Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xiaoping Wang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Liu‐Pan Yang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry Southern University of Science and Technology Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|