1
|
Wang X, Liang X, Zhao J, Cao Z, Zhang Y, Jiang L, Xu Z, Sui X. Acceleration of soy protein amyloid fibrils formation: Homologous seeding mechanism. Food Chem 2025; 465:142063. [PMID: 39579406 DOI: 10.1016/j.foodchem.2024.142063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/05/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Adding prefabricated seeds to the fibril formation solution can accelerate the process of fibrillation. Various variants of soy protein amyloid fibrils (SAFs) (oligomers, short fibrils, long fibrils and mature long fibrils) were employed as seeds (OL, SF, LF and MLF). These fibrils were then introduced into a solution using a homologous seeding approach. We conducted a comprehensive analysis of various aspects, including morphological characteristics, surface hydrophobicity, secondary structures, fibril conversion rate and rheological properties. The results indicated that the addition of seeds, particularly those composed of longer and more mature fibrils, played a pivotal role in accelerating the formation of rigid and extended fibrils. Mature long fibrils as seeds can shorten the formation time of long fibrils (fibril length ≥ 600 nm) from 12 to 3 h. The seeding significantly shortens the formation time of SAFs, meanwhile, this study provides insights into the intricate dynamics of amyloid fibril at homologous seeding.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zichen Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Schrenková V, Kapitán J, Bouř P, Chatziadi A, Sklenář A, Kaminský J. Sofosbuvir Polymorphs Distinguished by Linearly and Circularly Polarized Raman Microscopy. Anal Chem 2024; 96:18983-18993. [PMID: 39569750 PMCID: PMC11618743 DOI: 10.1021/acs.analchem.4c03573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Most currently marketed pharmaceuticals are manufactured in the solid state, where the bioavailability of the active pharmaceutical ingredient (API) can be optimized through different polymorphs, cocrystals, solvates, or salts. Efficient techniques are needed to monitor the structure of pharmaceuticals during production. Here, we explore the potential of linearly and circularly polarized Raman microscopy for distinguishing three polymorphs of sofosbuvir, an antiviral drug used to treat hepatitis C. Raman spectra were recorded on a Raman microscope for a polycrystalline API diluted in a KBr matrix. To understand spectral features including the low-frequency region, we simulated band frequencies and intensities using quantum-chemical computational strategies based on cluster and transfer approaches. Very good agreement was achieved between simulated and experimental intensities. The 20 to 200 cm-1 wavenumber region appeared particularly useful for polymorph discrimination already based on unpolarized measurements. The depolarization ratios obtained from linearly polarized Raman spectra made the distinction even more reliable. Moreover, circularly polarized Raman spectra and normalized degrees of circularity provided useful additional information and revealed several tentative markers of the different polymorphs of sofosbuvir. Although in some spectral regions the differences were less obvious, the results indicate that polarized Raman microscopy is a handy tool for discriminating between polymorphs of APIs and other compounds.
Collapse
Affiliation(s)
- Věra Schrenková
- Institute
of Organic Chemistry and Biochemistry of the Academy of Sciences, Flemingovo Nám. 2, Prague 16610, Czech Republic
- University
of Chemistry and Technology Prague, Technická 5, Prague 16628, Czech Republic
| | - Josef Kapitán
- Palacký
University Olomouc, 17.
Listopadu 12, Olomouc 77146, Czech Republic
| | - Petr Bouř
- Institute
of Organic Chemistry and Biochemistry of the Academy of Sciences, Flemingovo Nám. 2, Prague 16610, Czech Republic
| | - Argyro Chatziadi
- University
of Chemistry and Technology Prague, Technická 5, Prague 16628, Czech Republic
| | - Adam Sklenář
- Institute
of Organic Chemistry and Biochemistry of the Academy of Sciences, Flemingovo Nám. 2, Prague 16610, Czech Republic
- University
of Chemistry and Technology Prague, Technická 5, Prague 16628, Czech Republic
| | - Jakub Kaminský
- Institute
of Organic Chemistry and Biochemistry of the Academy of Sciences, Flemingovo Nám. 2, Prague 16610, Czech Republic
| |
Collapse
|
3
|
Pescitelli G, Di Bari L. The Phenomenon of Vibrational Circular Dichroism Enhancement: A Systematic Survey of Literature Data. J Phys Chem B 2024; 128:9043-9060. [PMID: 39279667 DOI: 10.1021/acs.jpcb.4c04143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
While the intensity of vibrational circular dichroism (VCD) signals is commonly 104-105 times smaller than that of corresponding IR signals, several kinds of systems display enhanced VCD spectra with g-values (VCD/IR intensity ratio) above 10-3 and even reaching 5 × 10-2 in some exceptional cases. These systems include transition metal and lanthanide complexes, protein and peptide fibrils, short oligopeptide gels, crystalline compounds, gels and solution aggregates of organic compounds. We review the literature on VCD enhancement, focusing on collecting and analyzing data on enhanced g-values. Special attention is given to the mechanisms proposed to produce these effects.
Collapse
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56126 Pisa, Italy
| |
Collapse
|
4
|
Majka Z, Kwiecień K, Kaczor A. Vibrational Optical Activity of Amyloid Fibrils. Chempluschem 2024; 89:e202400091. [PMID: 38421108 DOI: 10.1002/cplu.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Amyloid fibrils are supramolecular systems showing distinct chirality at different levels of their complex multilayered architectures. Due to the regular long-range chiral organization, amyloid fibrils exhibit the most intense Vibrational Optical Activity (VOA) signal observed up to now, making VOA techniques: Vibrational Circular Dichroism (VCD) and Raman Optical Activity (ROA) very promising tools to explore their structures, handedness and intricate polymorphism. This concept article reviews up-to-date experimental studies on VOA applications to investigate amyloid fibrils highlighting its future potential in analyzing of these unique supramolecular systems, in particular in the context of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Zuzanna Majka
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| | - Karolina Kwiecień
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Prof. St. Łojasiewicza 11 Str., Krakow, Poland
- Łukasiewicz Research Network-Institute of Microelectronics and Photonics, 39 Zabłocie Str., 30-701, Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Krakow, Poland
| |
Collapse
|
5
|
Rouquet E, Dupont J, Lepere V, Garcia GA, Nahon L, Zehnacker A. Conformer-Selective Photoelectron Circular Dichroism. Angew Chem Int Ed Engl 2024; 63:e202401423. [PMID: 38442011 DOI: 10.1002/anie.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Conformational flexibility and chirality both play a key role in molecular recognition. It is therefore very useful to develop spectroscopic methods that simultaneously probe both properties. It has been theoretically predicted that photoelectron circular dichroism (PECD) should be very sensitive to conformational isomerism. However, experimental proof has been less forthcoming and only exists for a very few favorable cases. Here, we present a new PECD scheme based on resonance-enhanced two-photon ionization (RE2PI) using UV/Vis nanosecond laser excitations. The spectral resolution obtained thereby guarantees conformer-selectivity by inducing resonant conformer-specific ππ* S1←S0 transitions. We apply this experimental scheme to the study of chiral 1-indanol, which exists in two conformers linked by a ring inversion and defined by the position of the hydroxyl group, namely axial and equatorial. We show that the PECD of the equatorial and axial forms considerably differ in sign, magnitude and shape. We also discuss the influence of the total ionization energy, vibronic excitation of intermediate and final states, and relative polarization of the excitation and ionization lasers. Conformer-specificity adds a new dimension to the applications of PECD in analytical chemistry addressing now the general case of floppy systems.
Collapse
Affiliation(s)
- Etienne Rouquet
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192, Gif sur Yvette, France
| | - Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Valeria Lepere
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192, Gif sur Yvette, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192, Gif sur Yvette, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405, Orsay, France
| |
Collapse
|
6
|
Hachlica N, Kolodziejczyk A, Rawski M, Górecki M, Wajda A, Kaczor A. "Nature or nurture" - How environmental factors influence the conformational memory of amyloid fibrils. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123293. [PMID: 37683433 DOI: 10.1016/j.saa.2023.123293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Amyloid fibrils are complex protein structures with multilayered chiral architecture, that are known to self-propagate. The replication of the mother seed structure by daughter fibrils is known as conformational or templated memory. Using vibrational circular dichroism (VCD), electronic circular dichroism (ECD), transmission electron microscopy (TEM), and cryo-electron microscopy (cryo-EM) we have shown that environmental factors (here agitation) can be a competing force against the templated growth of human lysozyme fibrils. In the cross-seeding experiment non-agitated daughters preserved the structure of agitated mothers, whereas agitated daughters did not always exhibit the same characteristics as their non-agitated mothers. This pattern was reflected on various levels of fibril architecture (secondary structure, protofilament handedness, morphology), demonstrating that the structural indeterminism originates from deeper levels of the fibril structure. This observation may contribute to a better understanding of the processes behind fibril formation.
Collapse
Affiliation(s)
- Natalia Hachlica
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Aleksandra Kolodziejczyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Michal Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aleksandra Wajda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
7
|
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes Dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophys J 2023; 122:2475-2488. [PMID: 37138517 PMCID: PMC10323027 DOI: 10.1016/j.bpj.2023.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
Collapse
Affiliation(s)
- Eva Přáda Brichtová
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | - Viv Lindo
- AstraZeneca, Cambridge, United Kingdom
| | | | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Machalska E, Zając G, Rode JE. Chirality transfer observed in Raman optical activity spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121604. [PMID: 35835058 DOI: 10.1016/j.saa.2022.121604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Chirality transfer (also called induced chirality) is a phenomenon present in chiroptical spectra that manifests itself as a new band or bands of an achiral molecule interacting with a chiral one. In the Raman optical activity (ROA) spectroscopy, the bands of achiral solvents have been recently observed, but the latest papers have shown that they corresponded to the new ECD-Raman (eCP-Raman) effect. Here, we show an unambiguous example of chirality transfer observed in the ROA spectra. The spectra registered for the (1:1) mixtures of achiral benzonitrile with the enantiomers of 2,2,2-trifluoro-1-phenylethanol, 1-phenylethanol, and 1-phenylethylamine exhibited the v(CN) vibration band at about 2230 cm-1. The ROA measurements were repeated several times to ensure the reliability of the phenomenon. Calculations revealed the CN···HO or CN···HNH hydrogen bond formation accompanied by the π···π or CH···π interactions. The interaction strength was shown to be an important factor for the pronouncement of the ROA chirality transfer effect.
Collapse
Affiliation(s)
- Ewa Machalska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-38 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Grzegorz Zając
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Joanna E Rode
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
9
|
Krupová M, Leszczenko P, Sierka E, Emma Hamplová S, Pelc R, Andrushchenko V. Vibrational Circular Dichroism Unravels Supramolecular Chirality and Hydration Polymorphism of Nucleoside Crystals. Chemistry 2022; 28:e202201922. [DOI: 10.1002/chem.202201922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Monika Krupová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Hylleraas Centre for Quantum Molecular Sciences Department of Chemistry UiT The Arctic University of Norway N-9037 Tromsø Norway
| | - Patrycja Leszczenko
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Ewa Sierka
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Sára Emma Hamplová
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Department of Biology and Biochemistry University of Bath Claverton Down Bath BA2 7AY United Kingdom
| | - Radek Pelc
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
- Third Faculty of Medicine Charles University Ruská 87 10000 Prague Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| |
Collapse
|
10
|
Sato H, Yamagishi A, Shimizu M, Watanabe K, Koshoubu J, Yoshida J, Kawamura I. Mapping of Supramolecular Chirality in Insect Wings by Microscopic Vibrational Circular Dichroism Spectroscopy: Heterogeneity in Protein Distribution. J Phys Chem Lett 2021; 12:7733-7737. [PMID: 34355918 DOI: 10.1021/acs.jpclett.1c01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supramolecular chirality of the hindwing of Anomala albopilosa (male) was investigated using a microscopic vibrational circular dichroism (VCD) system, denoted as MultiD-VCD. The source of intense infrared (IR) light for the system was a quantum cascade laser. Two-dimensional maps of IR and VCD spectra were taken by scanning the surface area (ca. 2 mm × 2 mm) of the insect hindwing tissue. The spectra ranged from 1500 to 1700 cm-1, and the maps have a spatial resolution of 100 μm. The distribution of proteins, including their supramolecular structures, was analyzed from the location-dependent spectral shape of the VCD bands assigned to amides I and II. The results revealed that the hindwing consists of segregated domains of proteins with different secondary structures: an α-helix (in one part of the membrane), a hybrid of α-helix and β-sheet (in another part of the membrane), and a coil (in a vein).
Collapse
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan
| | - Akihiko Yamagishi
- Department of Medicine, Faculty of Medicine, Toho University, Ota-ku 143-8540, Japan
| | - Masaru Shimizu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Keisuke Watanabe
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
11
|
Kurochka A, Průša J, Kessler J, Kapitán J, Bouř P. α-Synuclein conformations followed by vibrational optical activity. Simulation and understanding of the spectra. Phys Chem Chem Phys 2021; 23:16635-16645. [DOI: 10.1039/d1cp02574k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For α-synuclein novel structural markers were identified in vibrational optical activity spectra and supported by theoretical modeling.
Collapse
Affiliation(s)
- Andrii Kurochka
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Analytical Chemistry
| | - Jiří Průša
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
- Department of Analytical Chemistry
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| | - Josef Kapitán
- Department of Optics
- Palacký University Olomouc
- Olomouc
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 16610 Prague
- Czech Republic
| |
Collapse
|