1
|
Chrupková P, van Stokkum IHM, Friedrich T, Moldenhauer M, Budisa N, Tseng HW, Polívka T, Cherepanov DA, Maksimov EG, Kloz M. Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism. J Mol Biol 2024; 436:168625. [PMID: 38797429 DOI: 10.1016/j.jmb.2024.168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
Collapse
Affiliation(s)
- Petra Chrupková
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Ivo H M van Stokkum
- Vrije Universiteit, Department of Physics and Astronomy, Faculty of Sciences, De Boelelaan 1081, 1081HV Amsterdam, the Netherlands
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nediljko Budisa
- University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
| | - Hsueh-Wei Tseng
- University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
| | - Tomáš Polívka
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russian Federation; Lomonosov Moscow State University, A.N. Belozersky Institute of Physical-Chemical Biology, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Vorobyovy Gory 1-12, Moscow 119991, Russian Federation
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.
| |
Collapse
|
2
|
Liguori N, van Stokkum IH, Muzzopappa F, Kennis JTM, Kirilovsky D, Croce R. The Orange Carotenoid Protein Triggers Cyanobacterial Photoprotection by Quenching Bilins via a Structural Switch of Its Carotenoid. J Am Chem Soc 2024; 146:21913-21921. [PMID: 39058977 PMCID: PMC11311238 DOI: 10.1021/jacs.4c06695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Cyanobacteria were the first microorganisms that released oxygen into the atmosphere billions of years ago. To do it safely under intense sunlight, they developed strategies that prevent photooxidation in the photosynthetic membrane, by regulating the light-harvesting activity of their antenna complexes-the phycobilisomes-via the orange-carotenoid protein (OCP). This water-soluble protein interacts with the phycobilisomes and triggers nonphotochemical quenching (NPQ), a mechanism that safely dissipates overexcitation in the membrane. To date, the mechanism of action of OCP in performing NPQ is unknown. In this work, we performed ultrafast spectroscopy on a minimal NPQ system composed of the active domain of OCP bound to the phycobilisome core. The use of this system allowed us to disentangle the signal of the carotenoid from that of the bilins. Our results demonstrate that the binding to the phycobilisomes modifies the structure of the ketocarotenoid associated with OCP. We show that this molecular switch activates NPQ, by enabling excitation-energy transfer from the antenna pigments to the ketocarotenoid.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H.M. van Stokkum
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Fernando Muzzopappa
- Institute
for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette ,France
| | - John T. M. Kennis
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Diana Kirilovsky
- Institute
for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette ,France
| | - Roberta Croce
- Department
of Physics and Astronomy and Institute for Lasers, Life and Biophotonics,
Faculty of Science, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
3
|
Özcan E, Šímová I, Bína D, Litvín R, Polívka T. Ultrafast spectroscopy of the hydrophilic carotenoid crocin at various pH. Phys Chem Chem Phys 2024; 26:10225-10233. [PMID: 38497307 DOI: 10.1039/d4cp00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
This study delves into the pH-dependent effects on the excited-state behavior of crocin, a hydrophilic carotenoid with diverse functions in biological systems. Steady-state spectroscopy demonstrates notable changes in absorption and fluorescence spectra, characterized by a pH-dependent blue shift and altered resolution of vibrational bands. Transient absorption spectra further elucidate these effects, highlighting a significant blue shift in the S1-Sn peak with increasing pH. Detailed kinetic analysis shows the pH-dependent dynamics of crocin's excited states. At pH 11, a shortening of effective conjugation is observed, resulting in a prolonged S1/ICT lifetime. Conversely, at pH 9, our data suggest a more complex scenario, suggesting the presence of two distinct crocin species with different relaxation patterns. This implies structural alterations within the crocin molecule, potentially linked to the deprotonation of hydroxyl groups in crocin and/or saponification at high pH.
Collapse
Affiliation(s)
- Emrah Özcan
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Radek Litvín
- Department of Chemistry, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics and Biochemistry, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Kuznetsova V, Fuciman M, Polívka T. Relaxation dynamics of high-energy excited states of carotenoids studied by UV excitation and pump-repump-probe transient absorption spectroscopy. Phys Chem Chem Phys 2023; 25:22336-22344. [PMID: 37580966 DOI: 10.1039/d3cp02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The excited states of carotenoids have been a subject of numerous studies. While a majority of these reports target the excited state dynamics initiated by the excitation of the S2 state, the upper excited state(s) absorbing in the UV spectral region (denoted as SUV) has been only scarcely studied. Moreover, the relation between the SUV and Sn, the final state of the well-known S1-Sn transition of carotenoids, remains unknown. To address this yet-unresolved issue, we compared the excited state dynamics of two carotenoids, namely, β-carotene and astaxanthin, after excitation of either the SUV or Sn state. The SUV state was excited directly by UV light, and the excitation of the Sn state was achieved via re-pumping the S1-Sn transition. The results indicated that direct SUV excitation produces an S1-Sn band that is significantly broader than that obtained after S2 excitation, most probably due to the generation of multiple S1 conformations produced by excess energy. No such broadening is observed if the Sn state is excited by the re-pump pulse. This shows that the Sn and SUV states are different, each initializing a specific relaxation pathway. We propose that the Sn state retains the coupled triplet pair character of the S1 state, while the SUV state is the higher state of Bu+ symmetry accessible by one-photon transition.
Collapse
Affiliation(s)
- Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Özcan E, Kuznetsova V, Keşan G, Fuciman M, Litvín R, Polívka T. Ultrafast Excited States Dynamics of Metal Ion Complexes of the Carotenoid Astaxanthin. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Lu L, Song Y, Liu W, Jiang L. Excitation-Dependence of Excited-State Dynamics and Vibrational Relaxation of Lutein Explored by Multiplex Transient Grating. ACS OMEGA 2022; 7:48250-48260. [PMID: 36591184 PMCID: PMC9798734 DOI: 10.1021/acsomega.2c06371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Multiplex transient grating (MTG) spectroscopy was applied to lutein in ethanol to investigate the excitation-energy dependence of the excited-state dynamics and vibrational relaxation. The transient spectra obtained upon low (480 nm) and high-energy (380 nm) excitation both recorded a strong excited-state absorption (ESA) of S1 → S n as well as a broad band in the blue wavelength that was previously proposed as the S* state. By means of Gaussian decomposition and global fitting of the ESA band, a long-time component assigned to the triplet state was derived from the kinetic trace of 480 nm excitation. Moreover, the MTG signal with a resolution of 110 fs displayed the short-time quantum beat signal. In order to unveil the vibrational coherence in the excited-state decay, the linear and non-linear simulations of the steady spectrum and dynamic signals were presented in which at least three fundamental modes standing for C-C stretching (ν1), C=C stretching (ν2), and O-H valence vibrations (ν3) were considered to analyze the experimental signals. It was identified that the vibrational coherence between ν1 and ν3 or ν2 and ν3 was responsible for quantum beat that may be associated with the triplet state. We concluded that upon low- or high-energy excitation into the S2 state, the photo-isomerization of the molecule and structural recovery on the time-scale of vibrational cooling are the key factors to form a mixed conformation in the hot-S1 state that is the precursor of a long life-time triplet.
Collapse
Affiliation(s)
- Liping Lu
- College
of Science, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yunfei Song
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Weilong Liu
- Department
of Physics, Harbin Institute of Technology, Harbin, Heilongjiang150080, China
| | - Lilin Jiang
- Office
of Academic Research, Hezhou University, Hezhou, Guangxi542899, China
| |
Collapse
|
7
|
Šímová I, Kuznetsova V, Gardiner AT, Šebelík V, Koblížek M, Fuciman M, Polívka T. Carotenoid responds to excess energy dissipation in the LH2 complex from Rhodoblastus acidophilus. PHOTOSYNTHESIS RESEARCH 2022; 154:75-87. [PMID: 36066816 DOI: 10.1007/s11120-022-00952-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The functions of both (bacterio) chlorophylls and carotenoids in light-harvesting complexes have been extensively studied during the past decade, yet, the involvement of BChl a high-energy Soret band in the cascade of light-harvesting processes still remains a relatively unexplored topic. Here, we present transient absorption data recorded after excitation of the Soret band in the LH2 complex from Rhodoblastus acidophilus. Comparison of obtained data to those recorded after excitation of rhodopin glucoside and B800 BChl a suggests that no Soret-to-Car energy transfer pathway is active in LH2 complex. Furthermore, a spectrally rich pattern observed in the spectral region of rhodopin glucoside ground state bleaching (420-550 nm) has been assigned to an electrochromic shift. The results of global fitting analysis demonstrate two more features. A 6 ps component obtained exclusively after excitation of the Soret band has been assigned to the response of rhodopin glucoside to excess energy dissipation in LH2. Another time component, ~ 450 ps, appearing independently of the excitation wavelength was assigned to BChl a-to-Car triplet-triplet transfer. Presented data demonstrate several new features of LH2 complex and its behavior following the excitation of the Soret band.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Valentyna Kuznetsova
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Václav Šebelík
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
- Dynamical Spectroscopy, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching b. Munich, Germany
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marcel Fuciman
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská, 1760, 370 05, Ceske Budejovice, Czech Republic.
| |
Collapse
|
8
|
Nowak J, Füller J, Walla PJ. Combined contributions of carotenoids and chlorophylls in two-photon spectra of photosynthetic pigment-protein complexes-A new way to quantify carotenoid dark state to chlorophyll energy transfer? J Chem Phys 2022; 156:191103. [PMID: 35597651 DOI: 10.1063/5.0089420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transitions into the first excited state of carotenoids, Car S1, are optically forbidden in conventional one-photon excitation (OPE) but are possible via two-photon excitation (TPE). This can be used to quantify the amount of Car S1 to Chlorophyll (Chl) energy transfer in pigment-protein complexes and plants by observing the chlorophyll fluorescence intensity after TPE in comparison to the intensity observed after direct chlorophyll OPE. A parameter, ΦCoupling Car S1-Chl, can be derived that directly reflects relative differences or changes in the Car S1 → Chl energy transfer of different pigment-protein complexes and even living plants. However, very careful calibrations are necessary to ensure similar OPE and TPE excitation probabilities and transition energies. In plants, the exact same sample spot must be observed at the same time. All this is experimentally quite demanding. ΦCoupling Car S1-Chl also corrects intrinsically for direct chlorophyll TPE caused by larger chlorophyll excesses in the complexes, but recently it turned out that in certain TPE wavelengths ranges, its contribution can be quite large. Fortunately, this finding opens also the possibility of determining ΦCoupling Car S1-Chl in a much easier way by directly comparing values in TPE spectra observed at wavelengths that are either more dominated by Cars or Chls. This avoids tedious comparisons of OPE and TPE experiments and potentially allows measurement at even only two TPE wavelengths. Here, we explored this new approach to determine ΦCoupling Car S1-Chl directly from single TPE spectra and present first examples using known experimental spectra from Cars, Chl a, Chl b, LHC II, and PS 1.
Collapse
Affiliation(s)
- Julia Nowak
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Janin Füller
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Peter Jomo Walla
- Technische Universität Braunschweig, Institute for Physical and Theoretical Chemistry, Department for Biophysical Chemistry, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Undiandeye UJ, Louis H, Gber TE, Egemonye TC, Agwamba EC, Undiandeye IA, Adeyinka AS, Ita BI. Spectroscopic, conformational analysis, structural benchmarking, excited state dynamics, and the photovoltaic properties of Enalapril and Lisinopril. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
UV Excitation of Carotenoid Binding Proteins OCP and HCP: Excited‐State Dynamics and Product Formation. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|