1
|
Kutbay E, Ince S, Suzer S. AC-Modulated XPS Enables to Externally Control the Electrical Field Distributions on Metal Electrode/Ionic Liquid Devices. J Phys Chem B 2024; 128:4139-4147. [PMID: 38642062 DOI: 10.1021/acs.jpcb.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
X-Ray Photoelectron Spectroscopy (XPS) has been utilized to extract local electrical potential profiles by recording core-level binding energy shifts upon application of the AC [square-wave (SQW)] bias with different frequencies. An electrochemical system consisting of a coplanar capacitor with a polyethylene membrane (PEM) coated with the Ionic Liquid (IL) N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI) as the electrolyte is investigated. Analyses are carried out in operando, such that XPS measurements are recorded simultaneously with current measurements. ILs have complex charging/discharging processes, in addition to the formation of Electrical Double Layers (EDL) at the interfaces, and certain properties of these processes can be captured using AC modulation within appropriate time windows of observation. Herein, we select two frequencies, namely, 10 kHz and 0.1 Hz, to separate effects of the fast polarization and slow migratory motions, respectively. Moreover, the local potential developments after adding two equivalent series resistors at three different physical positions of the device have been carefully evaluated from the binding energy shifts in the F 1s peak representing the anion of the IL. This circuit modification allows us to quantify the AC currents passing through the device, as well as the system's impedance, in addition to revealing the potential variations due the IR drops. The complex AC-modulated local XPS data recorded can also be faithfully reproduced using the unmodulated F 1s spectrum and by convoluting it with electrical circuit output provided by the LT-Spice software. The outcome of these efforts is a more realistic equivalent circuit model, which can be related to chemical/physical makeup of the electrochemical system. An important finding of this methodology emerges as the possibility to induce additional local electrical field developments within the device, the directions of which can be reversed controllably.
Collapse
Affiliation(s)
- Ezgi Kutbay
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| | - Suleyman Ince
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| | - Sefik Suzer
- Department of Chemistry, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
2
|
Karaoglu G, Kutbay E, Ince S, Ulgut B, Suzer S. Assessing Local Electrical Properties of Ionic Liquid/Metal Interfaces with Operando-XPS and by Incorporating Additional Circuit Elements. Anal Chem 2023; 95:14861-14869. [PMID: 37768186 DOI: 10.1021/acs.analchem.3c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
X-ray photoelectron spectroscopy (XPS) has been utilized to record binding energy changes upon applying direct current (DC) and/or alternating current (AC) (square-wave) bias with different frequencies on a coplanar capacitor, having an ionic liquid (IL) film as the electrolyte. Electrical potential developments in numerous locations on the device are extracted from the variations in binding energy positions of the atomic core levels, which together with electrochemical measurements are used to extract local information before and after insertion of additional resistors in series. The presence of the IL introduces complex charging/discharging processes with a direct influence on the electrical double layer (EDL) formation, some of which can be untangled from each other via AC modulation by choosing appropriate time windows of observation. Accordingly, under 10 kHz modulation, fast processes are sampled, which are associated with electronic currents, and effects of slow migratory currents can be measured using 0.1 Hz. The addition of serial resistors allows us to quantify AC currents passing through, which reveals the magnitude of the system's impedance under different conditions. This process surprisingly reverses differences(s) in the voltage developments between the low and high frequencies over the electrified electrodes compared to those over the porous membrane in between. Our approach turns XPS into a powerful electrical and surface-sensitive tool for extracting localized electrochemical properties in a noninvasive and direct way. We expect that a wider utilization of the technique will lead to better identification of the obstacles for developing the next-generation sensing, energy harvesting, and storage systems as well as devices for iontronic/neuromorphic applications.
Collapse
Affiliation(s)
- Gozde Karaoglu
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Ezgi Kutbay
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Suleyman Ince
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Burak Ulgut
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| | - Sefik Suzer
- Department of Chemistry, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
3
|
Wang Y, Zhu X, Yang M, Ma H, Li R, Zhang J, Zhao Q, Ren J, Wang X, Yu H, Gao J, Hu M, Yang J. Fe Powder Catalytically Synthesized C 3N 3 toward High-Performance Anode Materials of Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22051-22064. [PMID: 37104816 DOI: 10.1021/acsami.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recently, carbon nitrides and their carbon-based derivatives have been widely studied as anode materials of lithium-ion batteries due to their graphite-like structure and abundant nitrogen active sites. In this paper, a layered carbon nitride material C3N3 consisting of triazine rings with an ultrahigh theoretical specific capacity was designed and synthesized by an innovative method based on Fe powder-catalyzed carbon-carbon coupling polymerization of cyanuric chloride at 260 °C, with reference to the Ullmann reaction. The structural characterizations indicated that the as-synthesized material had a C/N ratio close to 1:1 and a layered structure and only contained one type of nitrogen, suggesting the successful synthesis of C3N3. When used as a lithium-ion battery anode, the C3N3 material showed a high reversible specific capacity up to 842.39 mAh g-1 at 0.1 A g-1, good rate capability, and excellent cycling stability attributed to abundant pyridine nitrogen active sites, large specific surface area, and good structure stability. Ex situ XPS results indicated that Li+ storage relies on the reversible transformation of -C=N- and -C-N- groups as well as the formation of bridge-connected -C=C- bonds. To further optimize the performance, the reaction temperature was further increased to synthesize a series of C3N3 derivatives for the enhanced specific surface area and conductivity. The resulting derivative prepared at 550 °C showed the best electrochemical performance, with an initial specific capacity close to 900 mAh g-1 at 0.1 A g-1 and good cycling stability (94.3% capacity retention after 500 cycles at 1 A g-1). This work will undoubtedly inspire the further study of high-capacity carbon nitride-based electrode materials for energy storage.
Collapse
Affiliation(s)
- Yan Wang
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Xiaoran Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Huige Ma
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianze Zhang
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, Guangxi University, Nanning 530004, China
| | - Qian Zhao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jiayi Ren
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiping Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Mingjun Hu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jun Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| |
Collapse
|