1
|
Zhang SY, Ding XL, Qu SZ. Effect of External Electric Field on Nitrogen Activation on a Trimetal Cluster. Chemphyschem 2024; 25:e202300961. [PMID: 38850107 DOI: 10.1002/cphc.202300961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Efficient nitrogen (N2) fixation and activation under mild conditions are crucial for modern society. External electric fields (Felectric) can significantly affect N2 activation. In this work, the effect of Felectric on N2 activation by Nb3 clusters supported in a sumanene bowl was studied by density functional theory calculations. Four typical systems at different stages of N-N activation were studied, including two intermediates and two transition states. The impact of Felectric on various properties related to N2 activation was investigated, including the N-N bond length, overlap population density of states (OPDOS), total energy of the system, adsorption energy of N2, decomposition of energy changes, and electron transfer. The sumanene not only functions as a support and protective substrate, but also serves as a donor or acceptor under different Felectric conditions. Negative Felectric is beneficial to N-N bond activation because it promotes electron transfer to the N-N region and improves the d-π* orbital hybridization between metals and N2 in the activation process. Positive Felectric improves d-π* orbital hybridization only when the N-N is nearly dissociated. The microscopic mechanism of Felectric's effects provides insight into N2 activation and theoretical guidance for the design of catalytic reaction conditions for nitrogen reduction reactions (NRR).
Collapse
Affiliation(s)
- Song-Yang Zhang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Sheng-Ze Qu
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| |
Collapse
|
2
|
He HB, Ding XL, Wang YY, Chen Y, Wang MM, Chen JJ, Li W. Catalysts with Trimetallic Sites on Graphene-like C 2N for Electrocatalytic Nitrogen Reduction Reaction: A Theoretical Investigation. Chemphyschem 2024; 25:e202400143. [PMID: 38726743 DOI: 10.1002/cphc.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Indexed: 06/27/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is a green and highly efficient way to replace the industrial Haber-Bosch process. Herein, clusters consisting of three transition metal atoms loaded on C2N as NRR electrocatalysts are investigated using density functional theory (DFT). Meanwhile, Ca was introduced as a promoter and the role of Ca in NRR was investigated. It was found that Ca anchored to the catalyst can act as an electron donor and effectively promote the activation of N2 on M3. In both M3@C2N and M3Ca@C2N (M=Fe, Co, Ni), the limiting potential (UL) is less negative than that of the Ru(0001) surface and has the ability to suppress the competitive hydrogen evolution reaction (HER). Among them, Fe3@C2N is suggested to be the most promising candidate for NRR with high thermal stability, strong N2 adsorption ability, low limiting potential, and good NRR selectivity. The concepts of trimetallic sites and alkaline earth metal promoters in this work provide theoretical guidance for the rational design of atomically active sites in electrocatalytic NRR.
Collapse
Affiliation(s)
- Han-Bin He
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, P. R. China
| | - Ya-Ya Wang
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Yan Chen
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Jiao-Jiao Chen
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| |
Collapse
|
3
|
Jiang GD, Yang Q, Wei GP, Li ZY, He SG. Superior Reactivity of Molybdenum-Sulfur Cluster Anions Mo 5S 2- and Mo 5S 3- toward Dinitrogen. Inorg Chem 2023; 62:11318-11324. [PMID: 37428555 DOI: 10.1021/acs.inorgchem.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Inspired by the fact that Mo is a key element in biological nitrogenase, a series of gas-phase MoxSy- cluster anions are prepared and their reactivity toward N2 is investigated by the combination of mass spectrometry, photoelectron imaging spectroscopy, and density functional theory calculations. The Mo5S2- and Mo5S3- cluster anions show remarkable reactivity compared with the anionic species reported previously. The spectroscopic results in conjunction with theoretical analysis reveal that a facile cleavage of N≡N bonds takes place on Mo5S2- and Mo5S3-. The large dissociative adsorption energy of N2 and the favorable entrance channel for initial N2 approaching are proposed as two decisive factors for the superior reactivity of Mo5S2- and Mo5S3-. Besides, the modulation of S ligands on the reactivity of metal centers with N2 is proposed. The highly reactive metal-sulfur species may be obtained by the coordination of two to three sulfur atoms to bare metal clusters so that an appropriate combination of electronic structures and charge distributions can be achieved.
Collapse
Affiliation(s)
- Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Qi Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Gong-Ping Wei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P.R. China
| |
Collapse
|
4
|
Tian Z, Song C, Wang C, Wu H. Hollow polyhedral structures and properties of Ag 2n-1S n- (n = 2-11) clusters: A theoretical study. J Mol Model 2023; 29:105. [PMID: 36949350 DOI: 10.1007/s00894-023-05524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
CONTEXT The structures of Ag2n-1Sn- (n = 2-11) clusters are obtained by the combination of genetic algorithm (GA) and density functional theory (DFT). All the global minimum structures prefer hollow polyhedral structures, in which S-Ag-S element, triangular Ag3S3 and tetragonal Ag4S4 units present to stabilize the structures. The S atoms in the structures appear in μ3-S or μ4-S form. Adiabatic and vertical electron affinities of the clusters have been obtained, which reveals that they increases as cluster size. Stability analysis shows that Ag9S5- and Ag19S10- have special stability. The HOMO, LUMO orbitals of the clusters are obtained and the orbital components of them are calculated. The HOMO orbitals are mainly from the p orbitals of S atoms, whereas the s, p and d orbitals of Ag atoms contribute much bigger than the p orbitals of S atoms for LUMO orbitals. The orbital delocalization indexes (ODI) of the HOMOs and LUMOs are calculated, and the small ODIs of the HOMOs and LUMOs for n = 4-10 reveal that these orbitals are highly delocalized. By studying the projected density of states and molecular orbitals of Ag9S5- and Ag19S10- clusters, it is found that their molecular orbitals have superatomic properties. Superatomic properties play an important role in stabilizing clusters. METHODS This work used combined genetic algorithm and density functional theory (GA-DFT), and PBE0/Lanl2tz(Ag)/6-311G(d,p)(S) method to optimize the structures. Gaussian 16 program, Gauss view 6.0.16 program and Multiwfn 3.8 code are the softwares used.
Collapse
Affiliation(s)
- Zhimei Tian
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Chongfu Song
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, Anhui, China.
| | - Chang Wang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, Anhui, China
| | - Hai Wu
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, Anhui, China
| |
Collapse
|
5
|
Wang YY, Ding XL, Chen Y, Wang MM, Li W, Wang X. Trimetallic clusters in the sumanene bowl for dinitrogen activation. Phys Chem Chem Phys 2022; 24:23265-23278. [PMID: 36156001 DOI: 10.1039/d2cp03346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of great importance to find catalysts for the nitrogen reduction reaction (NRR) with high stability and reactivity. A series of M3 clusters (M = Ti, Zr, V, and Nb) supported on sumanene (C21H12) were designed as potential catalysts for the NRR by taking advantage of the high reactivity of trimetallic clusters and the unique geometric and electronic properties of sumanene, a bowl-like organic molecule. Detailed mechanisms of NN bond cleavage on C21H12-M3 were investigated by DFT calculations and compared with those on bare M3 clusters. M3 in the sumanene bowl is very stable with large binding energies, which prohibits the cohesion of M3 into M6. In the bowl, M3 has a (quasi-) equilateral triangle structure with lengthened M-M bonds, which is particularly beneficial to the N2 transfer process on Ti3 and V3 clusters. The N-N bond can be dissociated by both M3 and C21H12-M3 clusters without the overall energy barriers. A blurring effect is found in which some geometric and electronic properties of different metal types become similar when M3 is supported on the substrate. Our work demonstrates that sumanene is a suitable substrate to support M3 in the activation of N2 with enhanced stability and maintained a high level of reactivity compared to bare M3.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| |
Collapse
|
6
|
Experimental and Theoretical Study of N2 Adsorption on Hydrogenated Y2C4H− and Dehydrogenated Y2C4− Cluster Anions at Room Temperature. Int J Mol Sci 2022; 23:ijms23136976. [PMID: 35805983 PMCID: PMC9266966 DOI: 10.3390/ijms23136976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
The adsorption of atmospheric dinitrogen (N2) on transition metal sites is an important topic in chemistry, which is regarded as the prerequisite for the activation of robust N≡N bonds in biological and industrial fields. Metal hydride bonds play an important part in the adsorption of N2, while the role of hydrogen has not been comprehensively studied. Herein, we report the N2 adsorption on the well-defined Y2C4H0,1− cluster anions under mild conditions by using mass spectrometry and density functional theory calculations. The mass spectrometry results reveal that the reactivity of N2 adsorption on Y2C4H− is 50 times higher than that on Y2C4− clusters. Further analysis reveals the important role of the H atom: (1) the presence of the H atom modifies the charge distribution of the Y2C4H− anion; (2) the approach of N2 to Y2C4H− is more favorable kinetically compared to that to Y2C4−; and (3) a natural charge analysis shows that two Y atoms and one Y atom are the major electron donors in the Y2C4− and Y2C4H− anion clusters, respectively. This work provides new clues to the rational design of TM-based catalysts by efficiently doping hydrogen atoms to modulate the reactivity towards N2.
Collapse
|
7
|
Gurti JI, Ding X, Wang YY, Chen Y, Li W, Wang X. Comparison of Nitrogen Activation on Trinuclear Niobium and Tungsten Sulfide Clusters Nb3Sn and W3Sn (n = 0-3): A DFT Study. Chemphyschem 2022; 23:e202200124. [PMID: 35478374 DOI: 10.1002/cphc.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/15/2022] [Indexed: 11/10/2022]
Abstract
The reaction of N 2 with trinuclear niobium and tungsten sulfide clusters Nb 3 S n and W 3 S n ( n = 0-3) was systematically studied by density functional theory calculations . Dissociations of N-N bonds on these clusters are all thermodynamically allowed but with different reactivity in kinetics. The reactivity of Nb 3 S n is generally higher than that of W 3 S n . In the favorite reaction pathways, the adsorbed N 2 changes the adsorption sites from one metal atom to the bridge site of two metal atoms, then on the hollow site of three metal atoms, and at that place, the N-N bond dissociates. As the number of ligand S atoms increases, the reactivity of Nb 3 S n decreases because of the hindering effect of S atoms, while W 3 S and W 3 S 2 have the highest reactivity among four W 3 S n clusters. The Mayer bond order, bond length, vibrational frequency, and electronic charges of the adsorbed N 2 are analyzed along the reaction pathways to show the activation process of the N-N bond in reactions. The charge transfer from the clusters to the N 2 antibonding orbitals plays an essential role in N-N bond activation, which is more significant in Nb 3 S n than in W 3 S n , leading to the higher reactivity of Nb 3 S n . The reaction mechanisms found in this work may provide important theoretical guidance for the further rational design of related catalytic systems for nitrogen reduction reactions (NRR).
Collapse
Affiliation(s)
- Joseph Israel Gurti
- North China Electric Power University - Beijing Campus: North China Electric Power University, School of Mathematics and Physics, TANZANIA, UNITED REPUBLIC OF
| | - Xunlei Ding
- North China Electric Power University, School of Mathematics and Physics, Beinong Road 2, Huilongguan, Beijing, 102206, Beijing, CHINA
| | - Ya-Ya Wang
- North China Electric Power University - Beijing Campus: North China Electric Power University, School of New Energy, CHINA
| | - Yan Chen
- North China Electric Power University - Beijing Campus: North China Electric Power University, School of New Energy, CHINA
| | - Wei Li
- North China Electric Power University - Beijing Campus: North China Electric Power University, School of Mathematics and Physics, CHINA
| | - Xin Wang
- North China Electric Power University - Beijing Campus: North China Electric Power University, School of Mathematics and Physics, CHINA
| |
Collapse
|
8
|
Huang XQ, Ding XL, Wang J, Wang YY, Gurti JI, Chen Y, Wang MM, Li W, Wang X. Exploring trimetallic clusters containing alkali and alkaline earth metal atoms with high activity for nitrogen activation. Struct Chem 2022. [DOI: 10.1007/s11224-022-01919-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Ding YQ, Chen ZY, Li ZY, Cheng X, Wang M, Ma JB. Lithium-Assisted Dinitrogen Reduction Mediated by Nb 2LiNO 1-4- Cluster Anions: Electron Donors or Structural Units. J Phys Chem A 2022; 126:1511-1517. [PMID: 35226501 DOI: 10.1021/acs.jpca.1c10868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkali atoms are usually used as promoters to significantly increase the catalytic activity of transition-metal catalysts in a wide range of reactions such as dinitrogen conversion reactions. However, the role of alkali metal atoms remains controversial. Herein, a series of quaternary cluster anions containing lithium atoms Nb2LiNO1-4- have been synthesized and reacted with N2 at room temperature. The detailed experimental and theoretical investigations indicate that Nb2LiNO- is capable to cleave the N≡N bond and the Li atoms in Nb2LiNO1,2- act as electron donors in the N2 reduction reaction. With the increase in the number of oxygen atoms, the reactivity toward N2 is reduced from adsorption via a side-on end-on mode in Nb2LiNO2- to the inertness of Nb2LiNO4-. In Nb2LiNO3,4- anions, the Li atoms are bonded with oxygen atoms, acting as structural units to stabilize structures. Therefore, the roles of alkali atoms are able to change with different chemical environments of active sites. For the first time, we reveal how the number of ligands (oxygen atoms herein) can be used to finely regulate the reactivity toward N2.
Collapse
Affiliation(s)
- Yong-Qi Ding
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhi-Ying Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xin Cheng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
10
|
Cheng X, Li ZY, Mou LH, Wei GP, Liu QY, He SG. Size-dependent Reactivity of Rhodium Deuteride Cluster Anions Rh3Dn¯ (n = 0-3) toward Dinitrogen: The Prominent Role of σ Donation. J Chem Phys 2022; 156:064303. [DOI: 10.1063/5.0077183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xin Cheng
- Institute of Chemistry Chinese Academy of Sciences, China
| | - Zi-Yu Li
- Institute of Chemistry, Chinese Academy of Sciences, China
| | - Li-Hui Mou
- Institute of Chemistry Chinese Academy of Sciences, China
| | - Gong-Ping Wei
- Institute of Chemistry, Chinese Academy of Sciences, China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Wang YY, Ding XL, Gurti JI, Chen Y, Huang XQ, Li W, Wang X. Facile N≡N Bond Cleavage by Anionic Trimetallic Clusters V 3-x Ta x C 4 - (x=0-3): A DFT Study. Chemphyschem 2021; 23:e202100771. [PMID: 34821022 DOI: 10.1002/cphc.202100771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/14/2021] [Indexed: 11/08/2022]
Abstract
Activation of N2 on anionic trimetallic V3-x Tax C4 - (x=0-3) clusters was theoretically studied employing density functional theory. For all studied clusters, initial adsorption of N2 (end-on) on one of the metal atoms (denoted as Site 1) is transferred to an of end-on: side-on: side-on coordination on three metal atoms, prior to N2 dissociation. The whole reaction is exothermic and has no global energy barriers, indicating that the dissociation of N2 is facile under mild conditions. The reaction process can be divided into two processes: N2 transfer (TRF) and N-N dissociation (DIS). For V-series clusters, which has a V atom on Site 1, the rate-determining step is DIS, while for Ta-series clusters with a Ta on Site 1, TRF may be the rate-determining step or has energy barriers similar to those of DIS. The overall energy barriers for heteronuclear V2 TaC4 - and VTa2 C4 - clusters are lower than those for homonuclear V3 C4 - and Ta3 C4 - , showing that the doping effect is beneficial for the activation and dissociation of N2 . In particular, V-Ta2 C4 - has low energy barriers in both TRF and DIS, and it has the highest N2 adsorption energy and a high reaction heat release. Therefore, a trimetallic heteronuclear V-series cluster, V-Ta2 C4 - , is suggested to have high reactivity to N2 activation, and may serve as a prototype for designing related catalysts at a molecular level.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Joseph Israel Gurti
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xue-Qian Huang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China.,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing, 102206, P. R. China
| |
Collapse
|
12
|
Wang M, Zhou HY, Messinis AM, Chu LY, Li Y, Ma JB. Nitrogen Activation and Transformation on Monometallic Niobium Boron Oxide Cluster Anions at Room Temperature: A Dual-Site Mechanism. J Phys Chem Lett 2021; 12:6313-6319. [PMID: 34228457 DOI: 10.1021/acs.jpclett.1c01633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dinitrogen activation and transformation at room temperature is a goal that has been long sought after. Despite that, it remains underdeveloped due to being a challenging research area and the need for a better mechanistic understanding. Herein, we report that well-defined NbB3O2- gas-phase clusters can activate one N2 molecule and generate the products B3N2O- and B3N2O2-, as applying mass spectrometry and theoretical calculations. This unusual N2 activation reaction results from the different functions of the Nb and B3O2 moieties in NbB3O2-. Theoretical calculations suggest that a catalytic cycle can be completed by the recovery of NbB3O2-, which is achieved through the reactions of Nb and NbO with B3O2- and B3O-, respectively. This is the first example of N2 efficient transformation at a monometallic cluster, and this method for generating dual active sites by designing proper ligands may open the way toward the development of more effective N2 fixation and functionalization methodologies.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hai-Yan Zhou
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Lan-Ye Chu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Ying Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|