1
|
Katbashev A, Stahn M, Rose T, Alizadeh V, Friede M, Plett C, Steinbach P, Ehlert S. Overview on Building Blocks and Applications of Efficient and Robust Extended Tight Binding. J Phys Chem A 2025. [PMID: 40013428 DOI: 10.1021/acs.jpca.4c08263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The extended tight binding (xTB) family of methods opened many new possibilities in the field of computational chemistry. Within just 5 years, the GFN2-xTB parametrization for all elements up to Z = 86 enabled more than a thousand applications, which were previously not feasible with other electronic structure methods. The xTB methods provide a robust and efficient way to apply quantum mechanics-based approaches for obtaining molecular geometries, computing free energy corrections or describing noncovalent interactions and found applicability for many more targets. A crucial contribution to the success of the xTB methods is the availability within many simulation packages and frameworks, supported by the open source development of its program library and packages. We present a comprehensive summary of the applications and capabilities of xTB methods in different fields of chemistry. Moreover, we consider the main software packages for xTB calculations, covering their current ecosystem, novel features, and usage by the scientific community.
Collapse
Affiliation(s)
- Abylay Katbashev
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- OpenEye, Cadence Molecular Sciences, Ebertplatz 1, 50668 Cologne, Germany
| | - Thomas Rose
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, 02826 Görlitz, Germany
| | - Marvin Friede
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Pit Steinbach
- Institute of Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52074 Aachen, Germany
| | - Sebastian Ehlert
- AI for Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| |
Collapse
|
2
|
Ahn M, Lee S, Kim MJ, Chae M, Cho DW, Wee KR. Systematic radical species control by electron push-pull substitution in the perylene-based D-π-A compounds. RSC Adv 2023; 13:2283-2293. [PMID: 36741181 PMCID: PMC9837613 DOI: 10.1039/d2ra06460j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Organic radical materials have been mainly reported on the stabilization of radical species because of their high energy and reactivity, while design strategies for controlling radical species beyond stabilization have remained challenging. Here, we report the electronic push-pull control spanning the neutral to the radical state of a series of perylene-based donor-π-acceptors (D-π-A). By introducing electron-withdrawing and -donating R groups to the donor of D-π-A, the observed intramolecular interactions controllable at the HOMO level led to the exploration of radical species. D-π-A with redox-active sites was transformed to (D-π-A)˙+ and (D-π-A)˙- in response to an external electrical stimulus under stabilization by perylene, resulting in new absorption peaks. In particular, the increasing absorption peaks of (D-π-A)˙+ showed a spectral shift and intensity change according to the R group, unlike those of (D-π-A)˙-. These experimental results support that the DFT/TD-DFT data suggests the radical cationic SOMO level variability. As a result, we provide a strategy for controlling the systematic radical species using the electron push-pull effect.
Collapse
Affiliation(s)
- Mina Ahn
- Department of Chemistry and Institute of Natural Science, Daegu UniversityGyeongsan 38453Republic of Korea
| | - Soyoon Lee
- Department of Chemistry and Institute of Natural Science, Daegu UniversityGyeongsan 38453Republic of Korea
| | - Min-Ji Kim
- Department of Chemistry and Institute of Natural Science, Daegu UniversityGyeongsan 38453Republic of Korea
| | - Minjung Chae
- Department of Chemistry and Institute of Natural Science, Daegu UniversityGyeongsan 38453Republic of Korea
| | - Dae Won Cho
- Department of Chemistry, Yeungnam UniversityGyeongsanGyeongbuk 38541Republic of Korea
| | - Kyung-Ryang Wee
- Department of Chemistry and Institute of Natural Science, Daegu UniversityGyeongsan 38453Republic of Korea
| |
Collapse
|
3
|
Zhu Y, Xing X, Liu Z, Meng H. A step towards the application of molecular plasmonic-like excitations of PAH derivatives in organic electrochromics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|