1
|
Ni Y, Lebelt J, Barp M, Kreuter F, Buttkus H, Jin J, Kretzschmar M, Tonner-Zech R, Asmis KR, Gulder T. Hexafluorophosphate-Triggered Hydrogen Isotope Exchange (HIE) in Fluorinated Environments: A Platform for the Deuteration of Aromatic Compounds via Strong Bond Activation. Angew Chem Int Ed Engl 2025; 64:e202417889. [PMID: 39564991 DOI: 10.1002/anie.202417889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
There is a perpetual need for efficient and mild methods to integrate deuterium atoms into carbon frameworks through late-stage modifications. We have developed a simple and highly effective synthetic route for hydrogen isotope exchange (HIE) in aromatic compounds under ambient conditions. This method utilizes catalytic amounts of hexafluorophosphate (PF6 -) in deuterated 1,1,1,3,3,3-hexafluoroisopropanol (HFIP-d1) and D2O. Phenols, anilines, anisoles, and heterocyclic compounds were converted with high yields and excellent deuterium incorporations, which allows for the synthesis of a wide range of deuterated aromatic compounds. Spectroscopic and theoretical studies show that an interactive H-bonding network triggered by HFIP-d1 activates the typically inert P-F bond in PF6 - for D2O addition. The thus in situ formed DPO2F2 then triggers HIE, offering a new way to deuterated building blocks, drugs, and natural-product derivatives with high deuterium incorporation via the activation of strong bonds.
Collapse
Affiliation(s)
- Yang Ni
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonathan Lebelt
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
- Organic Chemistry-, Biomimetic Catalysis, Saarland University, 66123, Saarbruecken, Germany
| | - Milena Barp
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Florian Kreuter
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Hannah Buttkus
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Martin Kretzschmar
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Tanja Gulder
- Biomimetic Catalysis, Catalysis Research Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
- Institute of Organic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
- Organic Chemistry-, Biomimetic Catalysis, Saarland University, 66123, Saarbruecken, Germany
- Synthesis of Natural-Product Derived Drugs, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123, Saarbruecken, Germany
| |
Collapse
|
2
|
Khanifaev J, Schrader T, Perlt E. The effect of machine learning predicted anharmonic frequencies on thermodynamic properties of fluid hydrogen fluoride. J Chem Phys 2024; 160:124302. [PMID: 38516969 DOI: 10.1063/5.0195386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Anharmonic effects play a crucial role in determining thermochemical properties of liquids and gases. For such extended phases, the inclusion of anharmonicity in reliable electronic structure methods is computationally extremely demanding, and hence, anharmonic effects are often lacking in thermochemical calculations. In this study, we apply the quantum cluster equilibrium method to transfer density functional theory calculations at the cluster level to the macroscopic, liquid, and gaseous phase of hydrogen fluoride. This allows us to include anharmonicity, either via vibrational self-consistent field calculations for smaller clusters or using a regression model for larger clusters. We obtain the structural composition of the fluid phases in terms of the population of different clusters as well as isobaric heat capacities as an example for thermodynamic properties. We study the role of anharmonicities for these analyses and observe that, in particular, the dominating structural motifs are rather sensitive to the anharmonicity in vibrational frequencies. The regression model proves to be a promising way to get access to anharmonic features, and the extension to more sophisticated machine-learning models is promising.
Collapse
Affiliation(s)
- Jamoliddin Khanifaev
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tim Schrader
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Frömbgen T, Drysch K, Zaby P, Dölz J, Ingenmey J, Kirchner B. Quantum Cluster Equilibrium Theory for Multicomponent Liquids. J Chem Theory Comput 2024; 20:1838-1846. [PMID: 38372002 DOI: 10.1021/acs.jctc.3c00799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In this work, we present a new theory to treat multicomponent liquids based on quantum-chemically calculated clusters. The starting point is the binary quantum cluster equilibrium theory, which is able to treat binary systems. The theory provides one equation with two unknowns. In order to obtain another linearly independent equation, the conservation of mass is used. However, increasing the number of components leads to more unknowns, and this requires linearly independent equations. We address this challenge by introducing a generalization of the conservation of arbitrary quantities accompanied by a comprehensive mathematical proof. Furthermore, a case study for the application of the new theory to ternary mixtures of chloroform, methanol, and water is presented. Calculated enthalpies of vaporization for the whole composition range are given, and the populations or weights of the different clusters are visualized.
Collapse
Affiliation(s)
- Tom Frömbgen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
- Max-Planck-Institut Für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Katrin Drysch
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| | - Paul Zaby
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| | - Jürgen Dölz
- Institute for Numerical Simulation, University of Bonn, Friedrich-Hirzebruch-Allee 7, Bonn D-53115, Germany
| | - Johannes Ingenmey
- CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, Paris F-75005, France
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4 + 6, Bonn D-53115, Germany
| |
Collapse
|
4
|
Malloum A, Conradie J. Structures of DMSO clusters and quantum cluster equilibrium (QCE). J Mol Graph Model 2024; 126:108661. [PMID: 37913567 DOI: 10.1016/j.jmgm.2023.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Dimethylsulfoxide (DMSO) clusters are crucial for understanding processes in liquid DMSO. Despite its importance, DMSO clusters have received negligible attention due to the complexity of their potential energy surfaces (PESs). In this work, we explored the PESs of the DMSO clusters from dimer to decamer, starting with classical molecular dynamics, followed by full optimizations at the PW6B95-D3/def2-TZVP level of theory. In addition, the binding energies, the binding enthalpy per DMSO, and the quantum theory of atoms in molecules (QTAIM) analysis of the most stable isomers are reported. Temperature effects on the stability of the isomers have also been assessed. After thoroughly exploring the PESs of the DMSO clusters, 159 configurations have been used to apply the quantum cluster equilibrium (QCE) theory to liquid DMSO. The quantum cluster equilibrium theory has been applied to determine the liquid properties of DMSO from DMSO clusters. Thus, using the QCE, the population of the liquid DMSO, its infrared spectrum, and some thermodynamic properties of the liquid DMSO are predicted. The QCE results show that the population of the liquid DMSO is mainly dominated by the DMSO dimer and decamer, with the contribution in trace of the DMSO monomer, trimer, tetramer, pentamer, and octamer. More interestingly, the predicted infrared spectrum of liquid DMSO is in qualitative agreement with the experiment.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein 9300, South Africa; Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
5
|
Taherivardanjani S, Blasius J, Brehm M, Dötzer R, Kirchner B. Conformer Weighting and Differently Sized Cluster Weighting for Nicotine and Its Phosphorus Derivatives. J Phys Chem A 2022; 126:7070-7083. [PMID: 36170053 DOI: 10.1021/acs.jpca.2c03133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Weighting methods applied to systems with many conformers have been broadly employed to calculate thermodynamic properties, structural characteristics, and populations. To better understand and test the sensitivity of conventional weighting methods, the conformational distributions of nicotine and its phosphorus-substituted derivatives are investigated. The weighting schemes used for this are all based on Boltzmann statistics. Classical Boltzmann factors based on the electronic energy and the Gibbs free energy are calculated at different quantum chemical levels of theory and compared to cluster weights obtained by the quantum cluster equilibrium method. Furthermore, the influence of the modified rigid-rotor-harmonic-oscillator (mRRHO) approximation on the cluster weights is investigated. The substitution of the nitrogen atom in the methylpyrrolidine ring by a phosphorus atom results in more monomer conformers and clusters being populated. The conformational distribution of the monomers remained stable at different levels of theory and weighting methods. However, going to dimers and trimers, we observe a significant influence of the level of theory, weighting method, and mRRHO cutoff on the populations of these clusters. We show that mRRHO cutoff values of 50 and 100 cm-1 yield similar results, which is why 50 cm-1 is recommended as a robust choice. Furthermore, we observe that the global minimum for ΔE0 and ΔG varies in a few cases and that the global minimum is not always the dominantly occupied structure.
Collapse
Affiliation(s)
- Shima Taherivardanjani
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Reinhard Dötzer
- Competence Center Analytics, BASF SE, D-67056 Ludwigshafen, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4 + 6, D-53115 Bonn, Germany
| |
Collapse
|
6
|
Blasius J, Zaby P, Dölz J, Kirchner B. Uncertainty quantification of phase transition quantities from cluster weighting calculations. J Chem Phys 2022; 157:014505. [DOI: 10.1063/5.0093057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigate how uncertainties in experimental input data influence the results of quantum cluster equilibrium calculations. In particular, we focus on the calculation of vaporization enthalpies and entropies of seven organic liquids, compare two computational approaches for their calculation and investigate how these properties are affected by changes in the experimental input data. It is observed that the vaporization enthalpies and entropies show a smooth dependence on changes in the reference density and boiling point. The reference density is found to have only a small influence on the vaporization thermodynamics, whereas the boiling point has a large influence on the vaporization enthalpy but only a small influence on the vaporization entropy. Furthermore we employed the Gauss--Hermite estimator in order to quantify the uncertainty in the thermodynamic functions that stems from inaccuracies in the experimental reference data at the example of the vaporization enthalpy of (\textit{R})-butan-2-ol. We quantify the uncertainty as 30.95~$\cdot$10$^{-3}$~kJ~mol$^{-1}$. Additionally we compare the convergence behaviour and computational effort of the Gauss--Hermite estimator with the Monte Carlo approach and show the superiority of the former. By this, we present how uncertainty quantification can be applied to examples from theoretical chemistry.
Collapse
Affiliation(s)
- Jan Blasius
- University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| | - Paul Zaby
- University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| | - Jürgen Dölz
- Institute for Numerical Simulation, University of Bonn, Friedrich-Hirzebruch-Allee 7 53115 Bonn, Germany, Germany
| | - Barbara Kirchner
- Theoretical and Physical Chemistry, University of Bonn Institute of Physical and Theoretical Chemistry, Germany
| |
Collapse
|
7
|
Kirchner B, Ingenmey J, von Domaros M, Perlt E. The Ionic Product of Water in the Eye of the Quantum Cluster Equilibrium. Molecules 2022; 27:molecules27041286. [PMID: 35209075 PMCID: PMC8877775 DOI: 10.3390/molecules27041286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
The theoretical description of water properties continues to be a challenge. Using quantum cluster equilibrium (QCE) theory, we combine state-of-the-art quantum chemistry and statistical thermodynamic methods with the almost historical Clausius-Clapeyron relation to study water self-dissociation and the thermodynamics of vaporization. We pay particular attention to the treatment of internal rotations and their impact on the investigated properties by employing the modified rigid-rotor-harmonic-oscillator (mRRHO) approach. We also study a novel QCE parameter-optimization procedure. Both the ionic product and the vaporization enthalpy yield an astonishing agreement with experimental reference data. A significant influence of the mRRHO approach is observed for cluster populations and, consequently, for the ionic product. Thermodynamic properties are less affected by the treatment of these low-frequency modes.
Collapse
Affiliation(s)
- Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Beringstr. 4, 53115 Bonn, Germany
- Correspondence:
| | - Johannes Ingenmey
- CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, Sorbonne Université, F-75005 Paris, France;
| | - Michael von Domaros
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany;
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Friedrich-Schiller-Universität Jena, Löbdergraben 32, 07743 Jena, Germany;
| |
Collapse
|