1
|
Navarro A, Ruiz-Arias A, Fueyo-González F, Izquierdo-García C, Peña-Ruiz T, Gutiérrez-Rodríguez M, Herranz R, Cuerva JM, González-Vera JA, Orte A. Multiple pathways for lanthanide sensitization in self-assembled aqueous complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124926. [PMID: 39116593 DOI: 10.1016/j.saa.2024.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Lanthanide photoluminescence (PL) emission has attracted much attention for technological and bioimaging applications because of its particularly interesting features, such as narrow emission bands and very long PL lifetimes. However, this emission process necessitates a preceding step of energy transfer from suitable antennas. While biocompatible applications require luminophores that are stable in aqueous media, most lanthanide-based emitters are quenched by water molecules. Previously, we described a small luminophore, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid (PAnt), which is capable of dynamically coordinating with Tb(III) and Eu(III), and its exchangeable behavior improved their performance in PL lifetime imaging microscopy (PLIM) compared with conventional lanthanide cryptate imaging agents. Herein, we report an in-depth photophysical and time-dependent density functional theory (TD-DFT) computational study that reveals different sensitization mechanisms for Eu(III) and Tb(III) in stable complexes formed in water. Understanding this unique behavior in aqueous media enables the exploration of different applications in bioimaging or novel emitting materials.
Collapse
Affiliation(s)
- Amparo Navarro
- Departamento de Química Física y Analítica, Universidad de Jaén, Facultad de Ciencias Experimentales, 23071 Jaén, Spain
| | - Alvaro Ruiz-Arias
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | | | | | - Tomás Peña-Ruiz
- Departamento de Química Física y Analítica, Universidad de Jaén, Facultad de Ciencias Experimentales, 23071 Jaén, Spain
| | - Marta Gutiérrez-Rodríguez
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; PTI-Global Health CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosario Herranz
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Ciencias, University of Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Juan A González-Vera
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, University of Granada, Campus Cartuja, 18071, Granada, Spain; Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Angel Orte
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Facultad de Farmacia, University of Granada, Campus Cartuja, 18071, Granada, Spain.
| |
Collapse
|
2
|
Kariaka NS, Dyakonenko VV, Znovjyak KO, Shishkina SV, Amirkhanov VM. Synthesis, crystal structure and Hirshfeld surface analysis of the tetra-kis complex NaNdPyr 4( i-PrOH) 2· i-PrOH with a carbacyl-amido-phosphate of the amide type. Acta Crystallogr E Crystallogr Commun 2023; 79:1218-1222. [PMID: 38313130 PMCID: PMC10833406 DOI: 10.1107/s2056989023010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 02/06/2024]
Abstract
The tetra-kis complex of neodymium(III), tetra-kis-{μ-N-[bis-(pyrrolidin-1-yl)phos-phor-yl]acet-am-id-ato}bis(pro-pan-2-ol)neodymiumsodium pro-pan-2-ol monosol-vate, [NaNd(C10H16Cl3N3O2)4(C3H8O)2]·C3H8O or NaNdPyr4(i-PrOH)2·i-PrOH, with the amide type CAPh ligand bis(N,N-tetra-methylene)(tri-chloro-acetyl)phos-phoric acid tri-amide (HPyr), has been synthesized, crystallized and characterized by X-ray diffraction. The complex does not have the tetra-kis-(CAPh)lanthanide anion, which is typical for ester-type CAPh-based coordin-ation compounds. Instead, the NdO8 polyhedron is formed by one oxygen atom of a 2-propanol mol-ecule and seven oxygen atoms of CAPh ligands in the title compound. Three CAPh ligands are coordinated in a bidentate chelating manner to the NdIII ion and simultaneously binding the sodium cation by μ2-bridging PO and CO groups while the fourth CAPh ligand is coordinated to the sodium cation in a bidentate chelating manner and, due to the μ2-bridging function of the PO group, also binds the neodymium ion.
Collapse
Affiliation(s)
- Nataliia S. Kariaka
- Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kyiv, Ukraine
| | - Viktoriya V. Dyakonenko
- SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
| | - Kateryna O. Znovjyak
- Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kyiv, Ukraine
| | - Svitlana V. Shishkina
- SSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauky ave. 60, 61001 Kharkiv, Ukraine
| | - Volodymyr M. Amirkhanov
- Department of Chemistry, Kyiv National Taras Shevchenko University, Volodymyrska str. 64, 01601 Kyiv, Ukraine
| |
Collapse
|
3
|
Pelluau T, Sene S, Ali LMA, Félix G, Manhes F, Carneiro Neto AN, Carlos LD, Albela B, Bonneviot L, Oliviero E, Gary-Bobo M, Guari Y, Larionova J. Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with β-diketonate Tb 3+/Eu 3+ complexes as efficient ratiometric emissive thermometers working in water. NANOSCALE 2023; 15:14409-14422. [PMID: 37614145 DOI: 10.1039/d3nr01851b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Despite the great effort made in recent years on lanthanide-based ratiometric luminescent nanothermometers able to provide temperature measurements in water, their design remains challenging. We report on the synthesis and properties of efficient ratiometric nanothermometers that are based on mesoporous stellate nanoparticles (MSN) of ca. 90 nm functionalized with an acetylacetonate (acac) derivative inside the pores and loaded with β-diketonate-Tb3+/Eu3+ complexes able to work in water, in PBS or in cells. Encapsulating a [(Tb/Eu)9(acac)16(μ3-OH)8(μ4-O)(μ4-OH)] complex (Tb/Eu ratio = 19/1 and 9/1) led to hybrid multifunctionalized nanoparticles exhibiting a Tb3+ and Eu3+ characteristic temperature-dependent luminescence with a high rate Tb3+-to-Eu3+ energy transfer. According to theoretical calculations, the modifications of photoluminescence properties and the increase in the pairwise Tb3+-to-Eu3+ energy transfer rate by about 10 times can be rationalized as a change of the coordination number of the Ln3+ sites of the complex from 7 to 8 accompanied by a symmetry evolution from Cs to C4v and a slight shortening of intramolecular Ln3+-Ln3+ distances upon the effect of encapsulation. These nanothermometers operate in the 20-70 °C range with excellent photothermal stability, cyclability and repeatability (>95%), displaying a maximum relative thermal sensitivity of 1.4% °C-1 (at 42.7 °C) in water. Furthermore, they can operate in cells with a thermal sensitivity of 8.6% °C-1 (at 40 °C), keeping in mind that adjusting the calibration for each system is necessary to ensure accurate measurements.
Collapse
Affiliation(s)
| | - Saad Sene
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Gautier Félix
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Albano N Carneiro Neto
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luis D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Belén Albela
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Laurent Bonneviot
- Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France
| | - Erwan Oliviero
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
4
|
Kariaka NS, Lipa A, Carneiro Neto AN, Malta OL, Gawryszewska P, Amirkhanov VM. Eu 3+ and Tb 3+ coordination compounds with phenyl-containing carbacylamidophosphates: comparison with selected Ln 3+ β-diketonates. Front Chem 2023; 11:1188314. [PMID: 37255543 PMCID: PMC10225609 DOI: 10.3389/fchem.2023.1188314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Materials based on Eu3+ and Tb3+ coordination compounds are of great interest due to their strong red and green luminescence. Appropriate selection of ligands plays a huge role in optimizing their photophysical properties. Another very helpful instrument for such optimization is theoretical modelling, which permits the prediction of the emissive properties of materials through intramolecular energy transfer analysis. The ligands that allow for achieving high efficiency of Eu3+ and Tb3+ emissions include carbacylamidophosphates (CAPh, HL). In this brief review, we summarize recent research for lanthanides CAPh-based coordination compounds of general formulas Cat[LnL]4, [LnL3Q] and [Ln(HL)3(NO3)3], where Cat+ = Cs+, NEt4+, PPh4 + and Q = 1,10-phenanthroline, 2,2-bipyridine or triphenylphosphine oxide, involving the use of thermal gravimetric analysis, X-ray analysis, and absorption and luminescence spectroscopy. We carried out a comparison with selected Ln3+ β-diketonates. Possibilities and developments of theoretical calculations on energy transfer rates are also presented.
Collapse
Affiliation(s)
- Nataliia S. Kariaka
- Inorganic Chemistry Department, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Aneta Lipa
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Albano N. Carneiro Neto
- Physics Department, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Oscar L. Malta
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
5
|
Synthesis and characterization of the new carbacylamidophosphate based rare earth tetrakis-complexes NEt4[LnL4]. Effect of the ligand nitro group on luminescence of Eu3+ and Tb3+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Carneiro Neto AN, Moura RT, Carlos LD, Malta OL, Sanadar M, Melchior A, Kraka E, Ruggieri S, Bettinelli M, Piccinelli F. Dynamics of the Energy Transfer Process in Eu(III) Complexes Containing Polydentate Ligands Based on Pyridine, Quinoline, and Isoquinoline as Chromophoric Antennae. Inorg Chem 2022; 61:16333-16346. [PMID: 36201622 PMCID: PMC9580001 DOI: 10.1021/acs.inorgchem.2c02330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In this work, we investigated from a theoretical point
of view
the dynamics of the energy transfer process from the ligand to Eu(III)
ion for 12 isomeric species originating from six different complexes
differing by nature of the ligand and the total charge. The cationic
complexes present the general formula [Eu(L)(H2O)2]+ (where L = bpcd2– = N,N′-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate;
bQcd2– = N,N′-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate; and bisoQcd2– = N,N′-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N′-diacetate), while the neutral complexes present
the Eu(L)(H2O)2 formula (where L = PyC3A3– = N-picolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate; QC3A3– = N-quinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate;
and isoQC3A3– = N-isoquinolyl-N,N′,N′-trans-1,2-cyclohexylenediaminetriacetate).
Time-dependent density functional theory (TD-DFT) calculations provided
the energy of the ligand excited donor states, distances between donor
and acceptor orbitals involved in the energy transfer mechanism (RL), spin-orbit coupling matrix elements, and
excited-state reorganization energies. The intramolecular energy transfer
(IET) rates for both singlet-triplet intersystem crossing and ligand-to-metal
(and vice versa) involving a multitude of ligand and Eu(III) levels
and the theoretical overall quantum yields (ϕovl)
were calculated (the latter for the first time without the introduction
of experimental parameters). This was achieved using a blend of DFT,
Judd–Ofelt theory, IET theory, and rate equation modeling.
Thanks to this study, for each isomeric species, the most efficient
IET process feeding the Eu(III) excited state, its related physical
mechanism (exchange interaction), and the reasons for a better or
worse overall energy transfer efficiency (ηsens)
in the different complexes were determined. The spectroscopically
measured ϕovl values are in good agreement with the
ones obtained theoretically in this work. Photophysical properties of 12 Eu(III)
complexes with pyridine,
quinoline, and isoquinoline ligands in aqueous solutions were elucidated
and predicted through a theoretical protocol using a blend of DFT,
Judd−Ofelt theory, intramolecular energy transfer theory, and
coupled rate equation modeling calculations. The theoretical procedure
is general and can be extended to any lanthanide-based complexes.
Collapse
Affiliation(s)
- Albano N Carneiro Neto
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Renaldo T Moura
- Department of Chemistry and Physics, Federal University of Paraíba, 58397-000Areia, Brazil.,Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Luís D Carlos
- Physics Department and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193Aveiro, Portugal
| | - Oscar L Malta
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560Recife, Brazil
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Laboratorio di Tecnologie Chimiche, University of Udine, 33100Udine, Italy
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Silvia Ruggieri
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Marco Bettinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| | - Fabio Piccinelli
- Luminescent Materials Laboratory, Department of Biotechnology, University of Verona and INSTM, UdR Verona, 37134Verona, Italy
| |
Collapse
|