1
|
Liu F, Hao X, Liu B, Liu S, Yuan Y. Bile liquid biopsy in biliary tract cancer. Clin Chim Acta 2023; 551:117593. [PMID: 37839517 DOI: 10.1016/j.cca.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Biliary tract cancers are heterogeneous in etiology, morphology and molecular characteristics thus impacting disease management. Diagnosis is complex and prognosis poor. The advent of liquid biopsy has provided a unique approach to more thoroughly understand tumor biology in general and biliary tract cancers specifically. Due to their minimally invasive nature, liquid biopsy can be used to serially monitor disease progression and allow real-time monitoring of tumor genetic profiles as well as therapeutic response. Due to the unique anatomic location of biliary tract cancer, bile provides a promising biologic fluid for this purpose. This review focuses on the composition of bile and the use of these various components, ie, cells, extracellular vesicles, nucleic acids, proteins and metabolites as potential biomarkers. Based on the disease characteristics and research status of biliary tract cancer, considerable effort should be made to increase understanding of this disease, promote research and development into early diagnosis, develop efficient diagnostic, therapeutic and prognostic markers.
Collapse
Affiliation(s)
- Fusheng Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xingyuan Hao
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Bin Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis, and Program of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, 430071, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, PR China.
| |
Collapse
|
2
|
Li P, Kuo N, Patel R, Omary MB. Hypoosmosis alters hepatocyte mitochondrial morphology and induces selective release of carbamoyl phosphate synthetase 1. Am J Physiol Gastrointest Liver Physiol 2023; 325:G334-G346. [PMID: 37489865 PMCID: PMC10642991 DOI: 10.1152/ajpgi.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) is the most abundant hepatocyte mitochondrial matrix protein. Hypoosmotic stress increases CPS1 release in isolated mouse hepatocytes without cell death. We hypothesized that increased CPS1 release during hypoosmosis is selective and associates with altered mitochondrial morphology. Both ex vivo and in vivo models were assessed. Mouse hepatocytes and livers were challenged with isotonic or hypoosmotic (35 mosM) buffer. Mice were injected intraperitoneally with water (10% body weight) with or without an antidiuretic. Mitochondrial and cytosolic fractions were isolated using differential centrifugation, then analyzed by immunoblotting to assess subcellular redistribution of four mitochondrial proteins: CPS1, ornithine transcarbamylase (OTC), pyrroline-5-carboxylate reductase 1 (PYCR1), and cytochrome c. Mitochondrial morphology alterations were examined using electron microscopy. Hypoosmotic treatment of whole livers or hepatocytes led to preferential or increased mitochondrial release, respectively, of CPS1 as compared with two mitochondrial matrix proteins (OTC/PYCR1) and with the intermembrane space protein, cytochrome c. Mitochondrial apoptosis-induced channel opening using staurosporine in hepatocytes led to preferential CPS1 and cytochrome c release. The CPS1-selective changes were accompanied by dramatic alterations in ultrastructural mitochondrial morphology. In mice, hypoosmosis/hyponatremia led to increased liver vascular congestion and increased CPS1 in bile but not blood, coupled with mitochondrial structural alterations. In contrast, isotonic increase of intravascular volume led to a decrease in mitochondrial size with limited change in bile CPS1 compared with hypoosmotic conditions and absence of the hypoosmosis-associated histological alterations. Taken together, hepatocyte CPS1 is selectively released in response to hypoosmosis/hyponatremia and provides a unique biomarker of mitochondrial injury.NEW & NOTEWORTHY Exposure of isolated mouse livers, primary cultured hepatocytes, or mice to hypoosmosis/hyponatremia conditions induces significant mitochondrial shape alterations accompanied by preferential release of the mitochondrial matrix protein CPS1, a urea cycle enzyme. In contrast, the intermembrane space protein, cytochrome c, and two other matrix proteins, including the urea cycle enzyme ornithine transcarbamylase, remain preferentially retained in mitochondria. Therefore, hepatocyte CPS1 manifests unique mitochondrial stress response compartmentalization and is a sensitive sensor of mitochondrial hypoosmotic/hyponatremic injury.
Collapse
Affiliation(s)
- Pei Li
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States
| | - Ning Kuo
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States
| | - Rajesh Patel
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - M Bishr Omary
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
3
|
Muraki R, Morita Y, Ida S, Kitajima R, Furuhashi S, Takeda M, Kikuchi H, Hiramatsu Y, Takanashi Y, Hamaya Y, Sugimoto K, Ito J, Kawata K, Kawasaki H, Sato T, Kahyo T, Setou M, Takeuchi H. Phosphatidylcholine in bile-derived small extracellular vesicles as a novel biomarker of cholangiocarcinoma. Cancer Med 2023. [PMID: 37096775 DOI: 10.1002/cam4.5973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Owing to the lack of definite diagnostic modalities, it is challenging to distinguish malignant cases of cholangiocarcinoma (CCA), which often causes biliary tract obstruction, from benign ones. Here, we investigated a novel lipid biomarker of CCA in bile-derived small extracellular vesicles (sEVs) and developed a simple detection method for clinical application. METHODS Bile samples from seven patients with malignant diseases (hilar CCA = 4, distal CCA = 3) and eight patients with benign diseases (gallstones = 6, primary sclerosing cholangitis = 1, autoimmune pancreatitis = 1) were collected through a nasal biliary drainage tube. sEVs were isolated via serial ultracentrifugation and characterized using nanoparticle tracking analysis, transmission electron microscopy, and immunoblotting (with CD9, CD63, CD81, and TSG101). Comprehensive lipidomic analysis was performed using liquid chromatography-tandem mass spectrometry. Using a measurement kit, we further confirmed whether lipid concentrations could be used as a potential CCA marker. RESULTS Lipidomic analysis of bile sEVs in the two groups identified 209 significantly increased lipid species in the malignant group. When focusing on lipid class, phosphatidylcholine (PC) level was 4.98-fold higher in the malignant group than in the benign group (P = 0.037). The receiver operating characteristic (ROC) curve showed a sensitivity of 71.4%, a specificity of 100%, and an area under the curve (AUC) of 0.857 (95% confidence interval [CI]:0.643-1.000). Using a PC assay kit, the ROC curve showed a cutoff value of 16.1 μg/mL, a sensitivity of 71.4%, a specificity of 100%, and an AUC of 0.839 (95% CI: 0.620-1.000). CONCLUSION PC level in sEVs from human bile is a potential diagnostic marker for CCA and can be assessed by a commercially available assay kit.
Collapse
Affiliation(s)
- Ryuta Muraki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinya Ida
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ryo Kitajima
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Furuhashi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Makoto Takeda
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Perioperative Functioning Care & Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasushi Hamaya
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Jun Ito
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Kawata
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education & Research Center, Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Bile Processing Protocol for Improved Proteomic Analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2420:1-10. [PMID: 34905161 DOI: 10.1007/978-1-0716-1936-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One of the critical issues to warrant the success of a proteome-wide analysis is sample preparation. Efficient protein extraction in the absence of interferent material is mandatory to achieve an ample proteome coverage by mass spectrometry. The study of biological fluids is always challenging due to their specific biochemical composition. However, there is increasing interest in their characterization as it will provide proteins that may advice disease setting, state, and progression. In particular, bile is proximal to liver and pancreas, and its study is especially attractive since it might provide valuable information for the clinical management of severe diseases afflicting these organs, which are at an urgent need of new biomarkers. Though previous efforts have been made to optimize protocols to analyze bile proteome, only partial descriptions were achieved due to its complex composition, where proteins represent less than 5% of the organic components. Here we describe a new method that significantly increases the bile proteome coverage while reducing by a factor of six the amount of sample required for the proteomic analysis.
Collapse
|
5
|
Eteghadi MR, Nasehi M, Vaseghi S, Hesami-Tackallou S. The effect of Crocin on TFAM and PGC-1α expression and Catalase and Superoxide dismutase activities following cholestasis-induced neuroinflammation in the striatum of male Wistar rats. Metab Brain Dis 2021; 36:1791-1801. [PMID: 34019207 DOI: 10.1007/s11011-021-00748-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Bile secretion is a physiological function that is disrupted following Bile Duct Ligation (BDL) and induces cholestasis. Cholestasis is a bile flow reduction that induces apoptosis, oxidative stress, and inflammation, and alters the expression of genes. Evidence shows the relationship between cholestasis and neuroinflammation. Cholestasis via attenuating mitochondrial biogenesis and anti-oxidant activity can induce neuroinflammation and apoptosis. Mitochondrial transcriptional factor A (TFAM) and Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are involved in mitochondrial biogenesis, and TFAM, PGC-1α, Catalase (CAT), and Superoxide dismutase (SOD) have a role in upregulating antioxidant pathways. On the other hand, many studies have shown the neuroprotective effects of Crocin, the water-soluble carotenoid of Saffron (Crocus sativus L.). In this study, we aimed to investigate the effect of Crocin on the level of TFAM, PGC-1α, CAT, and SOD following cholestasis-induced neuroinflammation in the rat's striatum. Cholestasis was induced by BDL surgery and administration of Crocin was intraperitoneal, at the dose of 30 mg/kg every day, 24 h after BDL surgery up to thirty days. The results showed that TFAM, PGC-1α, and SOD were decreased following cholestasis; while, CAT was increased. In addition, Crocin restored the effects of cholestasis on the level of TFAM, PGC-1α, and SOD. In conclusion, Crocin may have improvement effects on cholestasis-induced neuroinflammation in the rat's striatum.
Collapse
Affiliation(s)
- Mohammad-Reza Eteghadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Saeed Hesami-Tackallou
- Department of Biology, Central Tehran Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
6
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
7
|
Ciordia S, Alvarez-Sola G, Rullán M, Urman JM, Ávila MA, Corrales FJ. Digging deeper into bile proteome. J Proteomics 2020; 230:103984. [PMID: 32932008 DOI: 10.1016/j.jprot.2020.103984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
The analysis of biological fluids to identify proteins that may indicate a disease setting, state and progression, is an increasingly explored field. Despite the expectatives created, there are several hurdles that must be solved to reach an extensive proteome coverage using mass spectrometry, mainly due to the complex composition of the matrices. In this regard, bile is specially challenging and yet, very attractive, as a proximal fluid that might provide valuable information for the management of liver and pancreas associated diseases. Proteins account for less than 5% of bile organic components and, although optimized protocols for protein extraction have been developed, only partial descriptions of bile proteome have been achieved. In this manuscript a new procedure is described that significantly improves protein recovery from rat bile, which reduces by a factor of six the sample amount required for a typical proteomics analysis. Moreover, the number of proteins reliably identified in a single nanoLC-MS/MS run from 1 μg protein was increased by three-fold. This procedure provides a valuable resource to dig deeper into the molecular composition of bile and open new avenues to identify new hallmarks of disease such as cholangiocarcinoma, hepatocellular carcinoma and pancreatic cancer for their better clinical management.
Collapse
Affiliation(s)
- Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain
| | - Jesús M Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matías A Ávila
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Fernando J Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología - CSIC, Proteored-ISCIII, 28049 Madrid, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain.
| |
Collapse
|
8
|
Brüggenwirth IMA, Porte RJ, Martins PN. Bile Composition as a Diagnostic and Prognostic Tool in Liver Transplantation. Liver Transpl 2020; 26:1177-1187. [PMID: 32246581 DOI: 10.1002/lt.25771] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023]
Abstract
Bile secretion and composition reflects the functional status of hepatocytes and cholangiocytes. Bile composition can have a role in the assessment of donor grafts before implantation in the recipient. In addition, changes in bile composition after liver transplantation can serve as a diagnostic and prognostic tool to predict posttransplant complications, such as primary nonfunction, acute cellular rejection, or nonanastomotic biliary strictures. With the popularization of liver machine perfusion preservation in the clinical setting, there is a revisited interest in biliary biomarkers to assess graft viability before implantation. This review discusses current literature on biliary biomarkers that could predict or assess liver graft and bile duct viability. Bile composition offers an exciting and novel perspective in the search for reliable hepatocyte and cholangiocyte viability biomarkers.
Collapse
Affiliation(s)
- Isabel M A Brüggenwirth
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, Groningen, the Netherlands
| | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA
| |
Collapse
|
9
|
Urman JM, Herranz JM, Uriarte I, Rullán M, Oyón D, González B, Fernandez-Urién I, Carrascosa J, Bolado F, Zabalza L, Arechederra M, Alvarez-Sola G, Colyn L, Latasa MU, Puchades-Carrasco L, Pineda-Lucena A, Iraburu MJ, Iruarrizaga-Lejarreta M, Alonso C, Sangro B, Purroy A, Gil I, Carmona L, Cubero FJ, Martínez-Chantar ML, Banales JM, Romero MR, Macias RI, Monte MJ, Marín JJG, Vila JJ, Corrales FJ, Berasain C, Fernández-Barrena MG, Avila MA. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach. Cancers (Basel) 2020; 12:cancers12061644. [PMID: 32575903 PMCID: PMC7352944 DOI: 10.3390/cancers12061644] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy.
Collapse
Affiliation(s)
- Jesús M. Urman
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - José M. Herranz
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Iker Uriarte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María Rullán
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Daniel Oyón
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Belén González
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Ignacio Fernandez-Urién
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Juan Carrascosa
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Federico Bolado
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - Lucía Zabalza
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
| | - María Arechederra
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Gloria Alvarez-Sola
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leticia Colyn
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - María U. Latasa
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Leonor Puchades-Carrasco
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
| | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;
- Program of Molecular Therapeutics, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - María J. Iraburu
- Department of Biochemistry and Genetics, School of Sciences; University of Navarra, 31008 Pamplona, Spain;
| | | | - Cristina Alonso
- OWL Metabolomics, Bizkaia Technology Park, 48160 Derio, Spain; (M.I.-L.); (C.A.)
| | - Bruno Sangro
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Hepatology Unit, Department of Internal Medicine, University of Navarra Clinic, 31008 Pamplona, Spain
| | - Ana Purroy
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Isabel Gil
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- Navarrabiomed Biobank Unit, IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lorena Carmona
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Francisco Javier Cubero
- Department of Immunology, Ophtalmology & Ear, Nose and Throat (ENT), Complutense University School of Medicine and 12 de Octubre Health Research Institute (Imas12), 28040 Madrid, Spain;
| | - María L. Martínez-Chantar
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Jesús M. Banales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marta R. Romero
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Rocio I.R. Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Maria J. Monte
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Jose J. G. Marín
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Juan J. Vila
- Department of Gastroenterology and Hepatology, Navarra University Hospital Complex, 31008 Pamplona, Spain; (J.M.U.); (M.R.); (D.O.); (B.G.); (I.F.-U.); (J.C.); (F.B.); (L.Z.); (J.J.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
| | - Fernando J. Corrales
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Proteomics Unit, Centro Nacional de Biotecnología (CNB) Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Carmen Berasain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Maite G. Fernández-Barrena
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
| | - Matías A. Avila
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain; (M.A.); (B.S.); (A.P.); (I.G.); (C.B.); (M.G.F.-B.)
- National Institute for the Study of Liver and Gastrointestinal Diseases, CIBERehd, Carlos III Health Institute, 28029 Madrid, Spain; (J.M.H.); (I.U.); (G.A.-S.); (M.L.M.-C.); (J.M.B.); (M.R.R.); (R.I.R.M.); (M.J.M.); (J.J.G.M.); (F.J.C.)
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (L.C.); (M.U.L.)
- Correspondence: ; Tel.: +34-948-194700 (ext. 4003)
| |
Collapse
|
10
|
Di Venere M, Viglio S, Cagnone M, Bardoni A, Salvini R, Iadarola P. Advances in the analysis of “less-conventional” human body fluids: An overview of the CE- and HPLC-MS applications in the years 2015-2017. Electrophoresis 2017; 39:160-178. [DOI: 10.1002/elps.201700276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Monica Di Venere
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Simona Viglio
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Anna Bardoni
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Roberta Salvini
- Department of Molecular Medicine; Biochemistry Unit; University of Pavia; Pavia PV Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”; Biochemistry Unit; University of Pavia; Pavia PV Italy
| |
Collapse
|
11
|
Megger DA, Padden J, Rosowski K, Uszkoreit J, Bracht T, Eisenacher M, Gerges C, Neuhaus H, Schumacher B, Schlaak JF, Sitek B. One Sample, One Shot - Evaluation of sample preparation protocols for the mass spectrometric proteome analysis of human bile fluid without extensive fractionation. J Proteomics 2017; 154:13-21. [DOI: 10.1016/j.jprot.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/08/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
|
12
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Dave LA, Hayes M, Montoya CA, Rutherfurd SM, Moughan PJ. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides. Peptides 2016; 76:30-44. [PMID: 26617077 DOI: 10.1016/j.peptides.2015.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 01/17/2023]
Abstract
It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived.
Collapse
Affiliation(s)
- Lakshmi A Dave
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Maria Hayes
- Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, D 15 Dublin, Ireland
| | - Carlos A Montoya
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| | - Paul J Moughan
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Iadarola P, Fumagalli M, Bardoni AM, Salvini R, Viglio S. Recent applications of CE- and HPLC-MS in the analysis of human fluids. Electrophoresis 2015; 37:212-30. [PMID: 26426542 DOI: 10.1002/elps.201500272] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/06/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
Abstract
The present review intends to cover the literature on the use of CE-/LC-MS for the analysis of human fluids, from 2010 until present. It has been planned to provide an overview of the most recent practical applications of these techniques to less extensively used human body fluids, including, bronchoalveolar lavage fluid, synovial fluid, nipple aspirate, tear fluid, breast fluid, amniotic fluid, and cerumen. Potential pitfalls related to fluid collection and sample preparation, with particular attention to sample clean-up procedures, and methods of analysis, from the research laboratory to a clinical setting will also be addressed. While being apparent that proteomics/metabolomics represent the most prominent approaches for global identification/quantification of putative biomarkers for a variety of human diseases, evidence is also provided of the suitability of these sophisticated techniques for the detection of heterogeneous components carried by these fluids.
Collapse
Affiliation(s)
- Paolo Iadarola
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Marco Fumagalli
- Department of Biology and Biotechnologies "L. Spallanzani,", Biochemistry Unit, University of Pavia, Italy
| | - Anna Maria Bardoni
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Roberta Salvini
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| | - Simona Viglio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Italy
| |
Collapse
|
16
|
de la Torre-Escudero E, Pérez–Sánchez R, Manzano-Román R, Oleaga A. Schistosome infections induce significant changes in the host biliary proteome. J Proteomics 2015; 114:71-82. [DOI: 10.1016/j.jprot.2014.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
|