1
|
Martinier I, Trichet L, Fernandes FM. Biomimetic tubular materials: from native tissues to a unifying view of new vascular, tracheal, gastrointestinal, oesophageal, and urinary grafts. Chem Soc Rev 2024. [PMID: 39606835 DOI: 10.1039/d4cs00429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Repairing tubular tissues-the trachea, the esophagus, urinary and gastrointestinal tracts, and the circulatory system-from trauma or severe pathologies that require resection, calls for new, more effective graft materials. Currently, the relatively narrow family of materials available for these applications relies on synthetic polymers that fail to reproduce the biological and physical cues found in native tissues. Mimicking the structure and the composition of native tubular tissues to elaborate functional grafts is expected to outperform the materials currently in use, but remains one of the most challenging goals in the field of biomaterials. Despite their apparent diversity, tubular tissues share extensive compositional and structural features. Here, we assess the current state of the art through a dual layer model, reducing each tissue to an inner epithelial layer and an outer muscular layer. Based on this model, we examine the current strategies developed to mimic each layer and we underline how each fabrication method stands in providing a biomimetic material for future clinical translation. The analysis provided here, addressed to materials chemists, biomaterials engineers and clinical staff alike, sets new guidelines to foster the elaboration of new biomimetic materials for effective tubular tissue repair.
Collapse
Affiliation(s)
- Isabelle Martinier
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Léa Trichet
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR 7574, Paris 75005, France.
| |
Collapse
|
2
|
Blaesi AH, Saka N. Gastroretentive fibrous dosage forms for prolonged delivery of sparingly-soluble tyrosine kinase inhibitors. Part 3: Theoretical models of drug concentration in blood. Int J Pharm 2024:124362. [PMID: 38901538 DOI: 10.1016/j.ijpharm.2024.124362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
In this part, drug concentration in blood after ingesting slow-release gastroretentive fibrous dosage forms and immediate-release particulate forms is modeled. The tyrosine kinase inhibitor nilotinib, which is slightly soluble in low-pH gastric fluid but practically insoluble in pH-neutral intestinal fluid is used as drug. The models suggest that upon ingestion, the fibrous dosage form expands, is retained in the stomach for prolonged time, and releases drug into the gastric fluid at a constant rate. The released drug molecules flow into the duodenum with the gastric fluid, and are absorbed by the blood. The drug is eliminated from the blood by the liver at a rate proportional to its concentration. Eventually, the elimination and absorption rates will be equal, and the drug concentration in blood plateaus out. After the gastric residence time drug absorption stops, and the drug concentration in blood drops to zero. By contrast, after administering an immediate-release particulate dosage form the drug particles are swept out of the stomach rapidly, and drug absorption stops much earlier. The drug concentration in blood rises and falls without attaining steady state. The gastroretentive fibrous dosage forms enable a constant drug concentration in blood for drugs that are insoluble in intestinal fluids.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
4
|
Blaesi AH, Saka N. WITHDRAWN: Gastroretentive fibrous dosage forms for prolonged delivery of sparingly soluble tyrosine kinase inhibitors. Part 3: Theoretical models of in vivo expansion, gastric residence time, and drug concentration in blood. Int J Pharm 2024; 653:123478. [PMID: 37839493 DOI: 10.1016/j.ijpharm.2023.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078, Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA, 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Shoshkes-Carmel M. Telocytes in the Luminal GI Tract. Cell Mol Gastroenterol Hepatol 2024; 17:697-701. [PMID: 38342300 PMCID: PMC10958115 DOI: 10.1016/j.jcmgh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Telocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells. However, the analysis of single-cell RNA sequencing has revealed other stromal populations and mechanisms for niche organization, raising questions about the role of telocytes as a component of the stem cell niche. This review explores the current state-of-the-art, existing controversies, and potential future directions related to telocytes in the luminal gastrointestinal tract.
Collapse
Affiliation(s)
- Michal Shoshkes-Carmel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
6
|
Elsasser TH, Faulkenberg S. Physiology of Gut Water Balance and Pathomechanics of Diarrhea. PRODUCTION DISEASES IN FARM ANIMALS 2024:179-209. [DOI: 10.1007/978-3-031-51788-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
García-Pérez R, Ramirez JM, Ripoll-Cladellas A, Chazarra-Gil R, Oliveros W, Soldatkina O, Bosio M, Rognon PJ, Capella-Gutierrez S, Calvo M, Reverter F, Guigó R, Aguet F, Ferreira PG, Ardlie KG, Melé M. The landscape of expression and alternative splicing variation across human traits. CELL GENOMICS 2023; 3:100244. [PMID: 36777183 PMCID: PMC9903719 DOI: 10.1016/j.xgen.2022.100244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022]
Abstract
Understanding the consequences of individual transcriptome variation is fundamental to deciphering human biology and disease. We implement a statistical framework to quantify the contributions of 21 individual traits as drivers of gene expression and alternative splicing variation across 46 human tissues and 781 individuals from the Genotype-Tissue Expression project. We demonstrate that ancestry, sex, age, and BMI make additive and tissue-specific contributions to expression variability, whereas interactions are rare. Variation in splicing is dominated by ancestry and is under genetic control in most tissues, with ribosomal proteins showing a strong enrichment of tissue-shared splicing events. Our analyses reveal a systemic contribution of types 1 and 2 diabetes to tissue transcriptome variation with the strongest signal in the nerve, where histopathology image analysis identifies novel genes related to diabetic neuropathy. Our multi-tissue and multi-trait approach provides an extensive characterization of the main drivers of human transcriptome variation in health and disease.
Collapse
Affiliation(s)
- Raquel García-Pérez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Jose Miguel Ramirez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Aida Ripoll-Cladellas
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Ruben Chazarra-Gil
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Winona Oliveros
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Oleksandra Soldatkina
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Mattia Bosio
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Paul Joris Rognon
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
- Department of Economics and Business, Universitat Pompeu Fabra, Barcelona, Catalonia 08005, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia 08034, Spain
| | - Salvador Capella-Gutierrez
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| | - Miquel Calvo
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Ferran Reverter
- Statistics Section, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Catalonia 08028, Spain
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation, Barcelona, Catalonia 08003, Spain
| | | | - Pedro G. Ferreira
- Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Laboratory of Artificial Intelligence and Decision Support, INESC TEC, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto, Institute for Research and Innovation in Health (i3s), R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | | | - Marta Melé
- Department of Life Sciences, Barcelona Supercomputing Center (BCN-CNS), Barcelona, Catalonia 08034, Spain
| |
Collapse
|
8
|
Bonche R, Smolen P, Chessel A, Boisivon S, Pisano S, Voigt A, Schaub S, Thérond P, Pizette S. Regulation of the collagen IV network by the basement membrane protein perlecan is crucial for squamous epithelial cell morphogenesis and organ architecture. Matrix Biol 2022; 114:35-66. [PMID: 36343860 DOI: 10.1016/j.matbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
All epithelia have their basal side in contact with a specialized extracellular matrix, the basement membrane (BM). During development, the BM contributes to the shaping of epithelial organs via its mechanical properties. These properties rely on two core components of the BM, collagen type IV and perlecan/HSPG2, which both interact with another core component, laminin, the initiator of BM assembly. While collagen type IV supplies the BM with rigidity to constrain the tissue, perlecan antagonizes this effect. Nevertheless, the number of organs that has been studied is still scarce, and given that epithelial tissues exhibit a wide array of shapes, their forms are bound to be regulated by distinct mechanisms. This is underscored by mounting evidence that BM composition and assembly/biogenesis is tissue-specific. Moreover, previous reports have essentially focused on the mechanical role of the BM in morphogenesis at the tissue scale, but not the cell scale. Here, we took advantage of the robust conservation of core BM proteins and the limited genetic redundancy of the Drosophila model system to address how this matrix shapes the wing imaginal disc, a complex organ comprising a squamous, a cuboidal and a columnar epithelium. With the use of a hypomorphic allele, we show that the depletion of Trol (Drosophila perlecan) affects the morphogenesis of the three epithelia, but particularly that of the squamous one. The planar surface of the squamous epithelium (SE) becomes extremely narrow, due to a function for Trol in the control of the squamous shape of its cells. Furthermore, we find that the lack of Trol impairs the biogenesis of the BM of the SE by modifying the structure of the collagen type IV lattice. Through atomic force microscopy and laser surgery, we demonstrate that Trol provides elasticity to the SE's BM, thereby regulating the mechanical properties of the SE. Moreover, we show that Trol acts via collagen type IV, since the global reduction in the trol mutant context of collagen type IV or the enzyme that cross-links its 7S -but not the enzyme that cross-links its NC1- domain substantially restores the morphogenesis of the SE. In addition, a stronger decrease in collagen type IV achieved by the overexpression of the matrix metalloprotease 2 exclusively in the BM of the SE, significantly rescues the organization of the two other epithelia. Our data thus sustain a model in which Trol counters the rigidity conveyed by collagen type IV to the BM of the SE, via the regulation of the NC1-dependant assembly of its scaffold, allowing the spreading of the squamous cells, spreading which is compulsory for the architecture of the whole organ.
Collapse
Affiliation(s)
| | - Prune Smolen
- Université Côte d'Azur, CNRS, Inserm, iBV, France
| | | | | | | | - Aaron Voigt
- Department of Neurology, University Medical Center, RWTH Aachen University, Aachen 52074, Germany
| | | | | | | |
Collapse
|
9
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
10
|
Simanenkov V, Maev I, Tkacheva O, Alekseenko S, Andreev D, Bakulina N, Bakulin I, Bordin D, Vlasov T, Vorobyeva N, Grinevich V, Gubonina I, Drobizhev M, Efremov N, Karateev A, Kotovskaya Y, Kravchuk I, Krivoborodov G, Kulchavenya E, Lila A, Maevskaya M, Nekrasova A, Poluektova E, Popkova T, Sablin O, Solovyeva O, Suvorov A, Tarasova G, Trukhan D, Fedotova A. Epithelial protective therapy in comorbid diseases. Practical Guidelines for Physicians. TERAPEVT ARKH 2022; 94:940-956. [PMID: 36286974 DOI: 10.26442/00403660.2022.08.201523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
In 2021 the first multidisciplinary National Consensus on the pathophysiological and clinical aspects of Increased Epithelial Permeability Syndrome was published. The proposed guidelines are developed on the basis of this Consensus, by the same team of experts. Twenty-eight Practical Guidelines for Physicians statements were adopted by the Expert Council using the "delphic" method. Such main groups of epithelial protective drugs as proton pump inhibitors, bismuth drugs and probiotics are discussed in these Guidelines from the positions of evidence-based medicine. The clinical and pharmacological characteristics of such a universal epithelial protector as rebamipide, acting at the preepithelial, epithelial and subepithelial levels, throughout gastrointestinal tract, are presented in detail.
Collapse
|
11
|
Liu C, Zhou J, Li Y, Lu Y, Lu H, Wei W, Wu M, Yi X. Urine-based regenerative RNA biomarkers for urinary bladder wound healing. Regen Med 2021; 16:709-718. [PMID: 34334016 DOI: 10.2217/rme-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study aimed to investigate the expression of regeneration-related genes in canine urine during bladder repair. Materials & methods: Canine urine samples were collected after partial cystectomy. Regenerative mRNA of hypoxia-inducible factor (HIF), vascular endothelial growth factor (VEGF), key stem cell transcription factors and cholinergic signals were detected. Results: HIF-1α, VEGF, CD44, IL-6 and prominin-1 expression in canine urine after partial cystectomy exhibited two similar peaks at ∼2 weeks. HIF-1α and VEGF expression were higher in the afternoon than the morning. The expression of key stem cell transcription factors and cholinergic signals also exhibited a rhythm along with bladder healing. Conclusions: The expression of HIF-1α, VEGF, key stem cell transcription factors and cholinergic signals exhibited a time curve distribution during canine bladder healing. The expression trend of some regenerative genes was similar during bladder healing, and a cooperative effect may exist.
Collapse
Affiliation(s)
- Chanzhen Liu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Juan Zhou
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - You Li
- Life Science Institute of East China Normal University, Shanghai, 200241, PR China
| | - Yulei Lu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Haoyuan Lu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Wei Wei
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Mingsong Wu
- School of Stomatology, Zunyi Medical University, Zunyi, 563006, PR China.,Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Xianlin Yi
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| |
Collapse
|
12
|
Goblet cell LRRC26 regulates BK channel activation and protects against colitis in mice. Proc Natl Acad Sci U S A 2021; 118:2019149118. [PMID: 33431687 DOI: 10.1073/pnas.2019149118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Goblet cells (GCs) are specialized cells of the intestinal epithelium contributing critically to mucosal homeostasis. One of the functions of GCs is to produce and secrete MUC2, the mucin that forms the scaffold of the intestinal mucus layer coating the epithelium and separates the luminal pathogens and commensal microbiota from the host tissues. Although a variety of ion channels and transporters are thought to impact on MUC2 secretion, the specific cellular mechanisms that regulate GC function remain incompletely understood. Previously, we demonstrated that leucine-rich repeat-containing protein 26 (LRRC26), a known regulatory subunit of the Ca2+-and voltage-activated K+ channel (BK channel), localizes specifically to secretory cells within the intestinal tract. Here, utilizing a mouse model in which MUC2 is fluorescently tagged, thereby allowing visualization of single GCs in intact colonic crypts, we show that murine colonic GCs have functional LRRC26-associated BK channels. In the absence of LRRC26, BK channels are present in GCs, but are not activated at physiological conditions. In contrast, all tested MUC2- cells completely lacked BK channels. Moreover, LRRC26-associated BK channels underlie the BK channel contribution to the resting transepithelial current across mouse distal colonic mucosa. Genetic ablation of either LRRC26 or BK pore-forming α-subunit in mice results in a dramatically enhanced susceptibility to colitis induced by dextran sodium sulfate. These results demonstrate that normal potassium flux through LRRC26-associated BK channels in GCs has protective effects against colitis in mice.
Collapse
|
13
|
Vishwakarma M, Thurakkal B, Spatz JP, Das T. Dynamic heterogeneity influences the leader-follower dynamics during epithelial wound closure. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190391. [PMID: 32713308 DOI: 10.1098/rstb.2019.0391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells of epithelial tissue proliferate and pack together to attain an eventual density homeostasis. As the cell density increases, spatial distribution of velocity and force show striking similarity to the dynamic heterogeneity observed elsewhere in dense granular matter. While the physical nature of this heterogeneity is somewhat known in the epithelial cell monolayer, its biological relevance and precise connection to cell density remain elusive. Relevantly, we had demonstrated how large-scale dynamic heterogeneity in the monolayer stress field in the bulk could critically influence the emergence of leader cells at the wound margin during wound closure, but did not connect the observation to the corresponding cell density. In fact, numerous previous reports had essentially associated long-range force and velocity correlation with either cell density or dynamic heterogeneity, without any generalization. Here, we attempted to unify these two parameters under a single framework and explored their consequence on the dynamics of leader cells, which eventually affected the efficacy of collective migration and wound closure. To this end, we first quantified the dynamic heterogeneity by the peak height of four-point susceptibility. Remarkably, this quantity showed a linear relationship with cell density over many experimental samples. We then varied the heterogeneity, by changing cell density, and found this change altered the number of leader cells at the wound margin. At low heterogeneity, wound closure was slower, with decreased persistence, reduced coordination and disruptive leader-follower interactions. Finally, microscopic characterization of cell-substrate adhesions illustrated how heterogeneity influenced orientations of focal adhesions, affecting coordinated cell movements. Together, these results demonstrate the importance of dynamic heterogeneity in epithelial wound healing. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Medhavi Vishwakarma
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK.,Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Basil Thurakkal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad 500046, India
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg 69120, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg 69117, Germany
| | - Tamal Das
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad (TIFR-H), Hyderabad 500046, India
| |
Collapse
|
14
|
Moreno-Manzano V, Mellado-López M, Morera-Esteve MJ, Alastrue-Agudo A, Bisbal-Velasco V, Forteza-Vila J, Serrano-Aroca Á, Vera-Donoso CD. Human adipose-derived mesenchymal stem cells accelerate decellularized neobladder regeneration. Regen Biomater 2019; 7:161-169. [PMID: 32296535 PMCID: PMC7147364 DOI: 10.1093/rb/rbz049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/11/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Decellularized natural bladder matrices (neobladders) represent an exciting means to regenerate the bladder following bladder cancer-associated cystectomy. In this study, we compare the evolution of decellularized matrices with recellularized matrices by seeding it with human adipose-derived mesenchymal stem cells (ADSC) after implantation following partial cystectomy in rats. We discovered significant anatomical differences since 10 days after neobladder implantation with the ADSC-containing matrices promoting a significant recovery of mature p63- and cytokeratin 7-positive urothelium. We also discovered significantly induced expression of the vimentin mesoderm marker in the submucosal layer in ADSC-seeded matrices. Interestingly, we found a higher expression of smooth muscle actin in transversal and longitudinal smooth muscle layers with ADSC-seeded matrices. Furthermore, ADSC also showed increased vascularization and nerve innervation of the neobladder as determined by the distribution of CD31 and S100β reactivity, respectively. We believe that ADSC and their paracrine-acting pro-regenerative secretome within decellularized matrices represent an efficient bladder substitution strategy; however, we require a fuller understanding of the mechanisms involved before clinical studies can begin.
Collapse
Affiliation(s)
- Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | | | | | - Ana Alastrue-Agudo
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Viviana Bisbal-Velasco
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Jerónimo Forteza-Vila
- Molecular Pathology and Translational Research in Oncology, Unidad Mixta Universidad Católica de Valencia y Centro de Investigación Príncipe Felipe, Spain
| | - Ángel Serrano-Aroca
- Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - César David Vera-Donoso
- Department of Urology, La Fe University and Polytechnic Hospital and Health Research Institute, Hospital La Fe, Valencia 46026, Spain
| |
Collapse
|
15
|
Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS, Turner JR. The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem 2018; 293:17317-17335. [PMID: 30242130 DOI: 10.1074/jbc.ra118.003908] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
Polarized epithelia assemble into sheets that compartmentalize organs and generate tissue barriers by integrating apical surfaces into a single, unified structure. This tissue organization is shared across organs, species, and developmental stages. The processes that regulate development and maintenance of apical epithelial surfaces are, however, undefined. Here, using an intestinal epithelial-specific knockout (KO) mouse and cultured epithelial cells, we show that the tight junction scaffolding protein zonula occludens-1 (ZO-1) is essential for development of unified apical surfaces in vivo and in vitro We found that U5 and GuK domains of ZO-1 are necessary for proper apical surface assembly, including organization of microvilli and cortical F-actin; however, direct interactions with F-actin through the ZO-1 actin-binding region (ABR) are not required. ZO-1 lacking the PDZ1 domain, which binds claudins, rescued apical structure in ZO-1-deficient epithelia, but not in cells lacking both ZO-1 and ZO-2, suggesting that heterodimerization with ZO-2 restores PDZ1-dependent ZO-1 interactions that are vital to apical surface organization. Pharmacologic F-actin disruption, myosin II motor inhibition, or dynamin inactivation restored apical epithelial structure in vitro and in vivo, indicating that ZO-1 directs epithelial organization by regulating actomyosin contraction and membrane traffic. We conclude that multiple ZO-1-mediated interactions contribute to coordination of epithelial actomyosin function and genesis of unified apical surfaces.
Collapse
Affiliation(s)
| | - Wangsun Choi
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Wei-Ting Kuo
- the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Gurminder Singh
- From the Departments of Pathology and.,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | | | | | - Le Shen
- From the Departments of Pathology and.,Surgery, University of Chicago, Chicago, Illinois 60637
| | - Alan S Fanning
- the Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jerrold R Turner
- From the Departments of Pathology and .,the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
16
|
Almansour K, Taverner A, Eggleston IM, Mrsny RJ. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia. J Control Release 2018; 279:208-219. [PMID: 29614254 DOI: 10.1016/j.jconrel.2018.03.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS19) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH2) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of poorly absorbed therapeutic agents of < ~ 5 kDa.
Collapse
Affiliation(s)
- Khaled Almansour
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Ian M Eggleston
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|