1
|
Bardhan P, Yang T. Sexual Dimorphic Interplays Between Gut Microbiota and Antihypertensive Drugs. Curr Hypertens Rep 2023; 25:163-172. [PMID: 37199902 PMCID: PMC10193343 DOI: 10.1007/s11906-023-01244-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
PURPOSE OF THE REVIEW The purpose of this study is to review the current literature regarding gut microbiota in blood pressure regulation and its interactions with antihypertensive drugs and to discuss how sex differences in gut microbiota contribute to sexual dimorphism of hypertension and treatment. RECENT FINDINGS The significance of gut microbiota in blood pressure regulation and hypertension etiology is growingly recognized. Targeting the dysbiotic microbiota is proposed to be a new therapeutic method. Recently, a few studies demonstrated that the gut microbiota is highly involved in the modulation of the efficacy of antihypertensive drugs, suggesting a novel mechanism by which gut microbiota plays a role in treatment-resistant hypertension. Furthermore, studies on sex differences in gut microbiota, etiology of hypertension, and sex bias in prescription of antihypertensive medications have revealed promising avenues in sexual dimorphism-based precision medicine. However, no scientific questions are ever raised on how sex differences in gut microbiota contribute to the sex specific responses of certain classes of antihypertensive drugs. Given the dynamics and complexity among individuals, precision medicine is proposed of great potential. We review current knowledge on the interactions between gut microbiota, hypertension, and antihypertensive drugs with an emphasis on sex as a crucial determinant. We propose that sex differences in gut microbiota be a research focus to advance our understanding of hypertension management.
Collapse
Affiliation(s)
- Pritam Bardhan
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Health Science Campus Block Health Science Bldg, Room 310, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Health Science Campus Block Health Science Bldg, Room 310, 3000 Arlington Ave., Toledo, OH, 43614, USA.
| |
Collapse
|
2
|
Gumz ML, Shimbo D, Abdalla M, Balijepalli RC, Benedict C, Chen Y, Earnest DJ, Gamble KL, Garrison SR, Gong MC, Hogenesch JB, Hong Y, Ivy JR, Joe B, Laposky AD, Liang M, MacLaughlin EJ, Martino TA, Pollock DM, Redline S, Rogers A, Dan Rudic R, Schernhammer ES, Stergiou GS, St-Onge MP, Wang X, Wright J, Oh YS. Toward Precision Medicine: Circadian Rhythm of Blood Pressure and Chronotherapy for Hypertension - 2021 NHLBI Workshop Report. Hypertension 2023; 80:503-522. [PMID: 36448463 PMCID: PMC9931676 DOI: 10.1161/hypertensionaha.122.19372] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Healthy individuals exhibit blood pressure variation over a 24-hour period with higher blood pressure during wakefulness and lower blood pressure during sleep. Loss or disruption of the blood pressure circadian rhythm has been linked to adverse health outcomes, for example, cardiovascular disease, dementia, and chronic kidney disease. However, the current diagnostic and therapeutic approaches lack sufficient attention to the circadian rhythmicity of blood pressure. Sleep patterns, hormone release, eating habits, digestion, body temperature, renal and cardiovascular function, and other important host functions as well as gut microbiota exhibit circadian rhythms, and influence circadian rhythms of blood pressure. Potential benefits of nonpharmacologic interventions such as meal timing, and pharmacologic chronotherapeutic interventions, such as the bedtime administration of antihypertensive medications, have recently been suggested in some studies. However, the mechanisms underlying circadian rhythm-mediated blood pressure regulation and the efficacy of chronotherapy in hypertension remain unclear. This review summarizes the results of the National Heart, Lung, and Blood Institute workshop convened on October 27 to 29, 2021 to assess knowledge gaps and research opportunities in the study of circadian rhythm of blood pressure and chronotherapy for hypertension.
Collapse
Affiliation(s)
- Michelle L Gumz
- Department of Physiology and Aging; Center for Integrative Cardiovascular and Metabolic Disease, Department of Medicine, Division of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL (M.L.G.)
| | - Daichi Shimbo
- Department of Medicine, The Columbia Hypertension Center, Columbia University Irving Medical Center, New York, NY (D.S.)
| | - Marwah Abdalla
- Department of Medicine, Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, New York, NY (M.A.)
| | - Ravi C Balijepalli
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Christian Benedict
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Sweden (C.B.)
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, and Research Department, Birmingham VA Medical Center, AL (Y.C.)
| | - David J Earnest
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, Bryan, TX (D.J.E.)
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, AL (K.L.G.)
| | - Scott R Garrison
- Department of Family Medicine, University of Alberta, Canada (S.R.G.)
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, KY (M.C.G.)
| | | | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Jessica R Ivy
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom (J.R.I.)
| | - Bina Joe
- Department of Physiology and Pharmacology and Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, OH (B.J.)
| | - Aaron D Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (A.D.L.)
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI (M.L.)
| | - Eric J MacLaughlin
- Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX (E.J.M.)
| | - Tami A Martino
- Center for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Ontario, Canada (T.A.M.)
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, AL (D.M.P.)
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (S.R.)
| | - Amy Rogers
- Division of Molecular and Clinical Medicine, University of Dundee, United Kingdom (A.R.)
| | - R Dan Rudic
- Department of Pharmacology and Toxicology, Augusta University, GA (R.D.R.)
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (E.S.S.)
| | - George S Stergiou
- Hypertension Center, STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece (G.S.S.)
| | - Marie-Pierre St-Onge
- Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center' New York, NY (M.-P.S.-O.)
| | - Xiaoling Wang
- Georgia Prevention Institute, Department of Medicine, Augusta University, GA (X.W.)
| | - Jacqueline Wright
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| | - Young S Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (R.C.B., Y.H., J.W., Y.S.O.)
| |
Collapse
|
3
|
Nahvi RJ, Tanelian A, Nwokafor C, Godino A, Parise E, Estill M, Shen L, Nestler EJ, Sabban EL. Transcriptome profiles associated with resilience and susceptibility to single prolonged stress in the locus coeruleus and nucleus accumbens in male sprague-dawley rats. Behav Brain Res 2023; 439:114162. [PMID: 36257560 PMCID: PMC9812303 DOI: 10.1016/j.bbr.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Although most people are subjected to traumatic stress at least once in their lifetime, only a subset develop long-lasting, stress-triggered neuropsychiatric disorders, such as PTSD. Here we examined different transcriptome profiles within the locus coeruleus (LC) and nucleus accumbens (NAc) that may contribute to stress susceptibility. Sprague Dawley male rats were exposed to the single prolonged stress (SPS) model for PTSD. Two weeks later they were tested for their anxiety/avoidance behavior on the Elevated Plus Maze (EPM) and were divided into high and low anxiety-like subgroups. RNA (n = 5 per group) was subsequently isolated from LC and NAc and subjected to RNAseq. Transcriptome analysis was used to identify differentially-expressed genes (DEGs) which differed by at least 50 % with significance of 0.01. The LC had more than six times the number of DEGs than the NAc. Only one DEG was regulated similarly in both locations. Many of the DEGs in the LC were associated with morphological changes, including regulation of actin cytoskeleton, growth factor activity, regulation of cell size, brain development and memory, with KEGG pathway of regulation of actin cytoskeleton. The DEGs in the NAc were primarily related to DNA repair and synthesis, and differential regulation of cytokine production. The analysis identified MTPN (myotrophin) and NR3C1 (glucocorticoid receptor) as important upstream regulators of stress susceptibility in the LC. Overall the study provides new insight into molecular pathways in the LC and NAc that are associated with anxiety-like behavior triggered by stress susceptibility or resilience.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|