1
|
Chen JY, Chang MH, Ho MC, Peng SF, Hsu WM, Lin WH, Wu JF. Hepatopulmonary syndrome in biliary atresia children increased postoperative complications after liver transplantation. Pediatr Neonatol 2024:S1875-9572(24)00199-2. [PMID: 39580337 DOI: 10.1016/j.pedneo.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Hepatopulmonary syndrome (HPS) is a complication in biliary atresia (BA) children following hepatoportoenterostomy. Liver transplantation (LT) was the definitive treatment of HPS. However, little was known about the risk factors between HPS and mortalities. We aimed to evaluate the role of HPS and the predictors of complications after LT in BA children. METHODS One hundred and twenty (54 males and 66 females) children with BA receiving LT were retrospectively enrolled. The primary outcome was postoperative biliary/vascular complication rates and the secondary outcome was post-LT mortality rates. RESULTS Among 120 BA children receiving LT, six (5%) children were diagnosed with HPS before LT. The overall survival rate of LT in BA children was 80% and the overall survival rate of LT in BA children with and without HPS was 17% and 83%, respectively. Vascular complications and HPS were predictors for poor overall survival rates both in univariate logistic regression analyses (hazard ratio [HR], 11.63 and 5.96; P < 0.0001 and P = 0.001, respectively) and multivariate logistic regression analyses (HR, 10.02 and 4.16; P < 0.0001 and P = 0.007, respectively). Kaplan-Meier analysis indicated the predictive role of HPS on poor overall survival rates (P < 0.0001), higher risks of biliary complications (P < 0.0001), and higher risks of jaundice (P < 0.01) post-LT. CONCLUSION The present study comprising children over long-term follow-up revealed that the development of pre-LT HPS had a poor impact on overall survival rates and higher risks of biliary complications in BA children receiving LT.
Collapse
Affiliation(s)
- Ju-Yin Chen
- Department of Pediatrics, Taipei City Hospital Women and Children Campus, Taipei, Taiwan; Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwei Chang
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chih Ho
- Departments of Surgery, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsinchu, Taiwan
| | - Shinn-Forng Peng
- Departments of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Ming Hsu
- Departments of Pediatric Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Hsi Lin
- Departments of Pediatric Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jia-Feng Wu
- Departments of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Zeng Z, Lei Y, Yang C, Wu X, Zhang L, Yang Z, Chen L, Wang X, Belguise K, Li Y, Yi B. The Therapeutic Effects of Baicalein on the Hepatopulmonary Syndrome in the Rat Model of Chronic Common Bile Duct Ligation. J Clin Transl Hepatol 2024; 12:496-504. [PMID: 38779522 PMCID: PMC11106353 DOI: 10.14218/jcth.2023.00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims Hepatopulmonary syndrome (HPS) is characterized by arterial oxygenation defects due to pulmonary vascular dilation in liver disease. To date, liver transplantation remains the only effective treatment for HPS. This study aimed to explore the preventative role of baicalein in HPS development. Methods Sixty male rats were randomly assigned to three groups: sham, common bile duct ligation (CBDL), and baicalein, receiving intraperitoneal injections of baicalein (40 mg·kg-1·d-1, diluted in saline) for 21 days. Survival rate, liver and kidney function, and bile acid metabolism levels were evaluated. Liver and lung angiogenesis and hepatic glycogen staining were assessed, and the expression of relevant proteins was evaluated by immunohistochemistry. Results Baicalein improved survival rates and hypoxemia in rats post-CBDL, reducing angiogenic protein levels and enhancing glucose homeostasis. Compared to the untreated group, baicalein suppressed the expression of vascular endothelial growth factor, placental growth factors, matrix metalloprotease 9 and C-X-C motif chemokine 2, and it increased the expression of glycemic regulatory proteins, including dipeptidyl peptidase-4, sirtuin 1, peroxisome proliferator-activated receptor gamma co-activator 1α, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3. Conclusion Baicalein significantly improves hepatic function and hypoxia in HPS rats by attenuating pathological angiogenesis in the liver and lungs, showing promise as a treatment for HPS.
Collapse
Affiliation(s)
- Ziyang Zeng
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuhao Lei
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chunyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xianfeng Wu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liang Zhang
- Department of Anesthesiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zhiyong Yang
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaobo Wang
- MCD, Center de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Karine Belguise
- MCD, Center de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yujie Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bin Yi
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Chooklin S, Chuklin S, Posivnych M, Krystopchuk S. Pathophysiological basis of hepatopulmonary syndrome. Gastroenterology 2024; 58:73-81. [DOI: 10.22141/2308-2097.58.1.2024.590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Circulatory changes with increased blood flow and vasodilatation/vasoconstriction imbalance are an integral consequence of liver cirrhosis and portal hypertension and can affect the pulmonary circulation with the development of vascular disorders, with hepatopulmonary syndrome (HPS) being the most common. HPS is a serious pulmonary complication of progressive liver disease, resulting in a poor clinical prognosis. Vascular tone decrease, monocytic infiltration of pulmonary vessels, formation of intrapulmonary arteriovenous shunts, dysfunction of alveolar type II cells, destruction of the endothelial glycocalyx are important in the pathogenesis of HPS. Abnormalities of pulmonary capillaries lead to hypoxemia caused by a violation of the ventilation/perfusion ratio, diffusion disorders, and the development of arteriovenous anastomoses. Infiltration of the pulmonary vessels by monocytes is one of the key factors of HPS. This migration is facilitated by the intestinal microbiota translocation into the portal bloodstream with increased expression of proinflammatory cytokines (tumor necrosis factor α, interleukins 1, 6), leading to the activation of monocytes. Monocytes located in the pulmonary circulation promote the vasodilation through the activation of inducible nitric oxide (NO) synthase and thus NO production. This is also associated with endothelial dysfunction due to a decreased hepatic secretion of bone morphogenetic protein 9 and increased endothelin 1, endothelial overexpression of endothelin B receptors, and increased endothelial NO production. Proangiogenic factors such as vascular endothelial growth factor, platelet-derived growth factor, and placental growth factor play an important role in the proliferation of pulmonary capillaries. Circulation of tumor necrosis factor α, bile acids and monocyte infiltration in the pulmonary circulation lead to increased apoptosis of alveolar type II cells and decreased surfactant synthesis. Chronic inflammation in HPS disrupts the continuity of the endothelial glycocalyx layer. This article provides an overview of the current knowledge on the pathogenesis of HPS, summarizes many features of the disease based on the literature research in MEDLINE database on the PubMed platform.
Collapse
|
4
|
Ishikawa T, Kawamoto D, Nishimura T, Suetomi T, Kobayashi S, Takami T. Portopulmonary Hypertension Treated by Occlusion of a Spontaneous Portosystemic Shunt Followed by Endothelin Receptor Antagonist Administration. J Vasc Interv Radiol 2024; 35:313-315. [PMID: 37931842 DOI: 10.1016/j.jvir.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Affiliation(s)
- Tsuyoshi Ishikawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube-Yamaguchi 7558505, Japan.
| | - Daiki Kawamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube-Yamaguchi 7558505, Japan
| | - Tatsuro Nishimura
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube-Yamaguchi 7558505, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube-Yamaguchi, Japan
| | - Shigeki Kobayashi
- Department of Therapeutic Science for Heart Failure in the Elderly, Yamaguchi University School of Medicine, Ube-Yamaguchi, Japan
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube-Yamaguchi 7558505, Japan
| |
Collapse
|
5
|
Radosevich MA, Wieruszewski PM, Wittwer ED. Tris-Hydroxymethyl Aminomethane in Critically Ill Adults: A Systematic Review. Anesth Analg 2023; 137:1007-1018. [PMID: 37075790 DOI: 10.1213/ane.0000000000006485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Tris-hydroxymethyl aminomethane (THAM) is an amino alcohol used clinically to buffer acid loads and raise pH in acidotic conditions. Unlike sodium bicarbonate, which increases plasma sodium levels with use and produces carbon dioxide (CO 2 ) as part of the buffering process, THAM does neither. Although not widely used in modern critical care and unavailable for clinical use in 2016, THAM has been available in the United States since 2020. Clinical experience and existing literature suggest that THAM may have clinical utility in acid-base management in conditions such as liver transplantation where rising sodium levels during perioperative care may be dangerous, and in managing acid-base derangements during care of patients with acute respiratory distress syndrome (ARDS). To clarify the evidence base supporting the clinical use of THAM, we conducted a systematic review to assess the efficacy and safety of THAM as a buffering agent in critically ill adults using Ovid EBM Reviews, Ovid Embase, Ovid Medline, Scopus, and Web of Science Core Collection. Randomized-, crossover-, retrospective cohort-, parallel-designed clinical trials, case series, and case reports of adult patients who received THAM in the operative or critical care setting were included. Conference abstracts of qualifying study designs were also included. Two independent reviewers extracted the data regarding the study details, demographics, treatment, and outcomes data. A third reviewer adjudicated discrepancies. A total of 21 studies including 3 randomized controlled trials, 5 observational studies, 4 case series, and 9 case reports met inclusion criteria. Eight studies (38%) were abstracts published in conference proceedings. In total, 417 critically ill patients received THAM to treat acidosis in critically ill surgical and nonsurgical patients, during liver transplantation, and in ARDS. In general, THAM corrected acidosis with an efficacy equivalent to sodium bicarbonate and did so with less hypercarbia and hypernatremia. Adverse effects of THAM included hyperkalemia, hypoglycemia, ventilator depression, and tissue damage with extravasation. We conclude that THAM may have potential advantages in some critical care settings, but that clinical evidence is limited, and high-quality evaluations are necessary.
Collapse
|
6
|
Lapisatepun W, Ma C, Lapisatepun W, Agopian V, Wray C, Xia VW. Super-massive transfusion during liver transplantation. Transfusion 2023; 63:1677-1684. [PMID: 37493440 DOI: 10.1111/trf.17496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Massive hemorrhage and transfusion during liver transplantation (LT) present great challenges. We aimed to investigate the incidence and risk factors for super-massive transfusion (SMT) and survival outcome and factors that negatively affect survival in patients who received SMT during LT. STUDY DESIGN AND METHODS We included adult patients undergoing LT from 2004 to 2019. SMT was defined as transfusion of ≥50 units of red blood cells (RBC) during LT. Independent risk factors were identified by multivariable logistic regression. Ninety-day survival was recorded and factors that negatively affected survival were analyzed by the Cox survival test. RESULTS Of 2772 patients, 158 (5.6%) received SMT during LT. Mean RBC transfusion was 72.6 (±23.4) units with a maximum of 168 units. Four variables (MELD-Na score, previous upper abdominal surgery, portal vein thrombosis, and remote retransplant) were independent risk factors for SMT (odds ratio 1.800-8.274, 95% CI 1.008-16.685, all p < .005). The 90-day survival rate in SMT patients was 81.6%. Preoperative pulmonary hypertension and massive postreperfusion transfusion negatively affected 90-day survival (hazard ratio 2.658-4.633, 95% CI 1.144-10.130, and all p < .05). CONCLUSIONS In this large retrospective study, we found that SMT occurred in a small percentage of patients and was associated with relatively satisfactory short-term survival. Identification of preoperative risk factors for SMT and factors that negatively affect survival improve our understanding of this unique LT patient population.
Collapse
Affiliation(s)
- Warangkana Lapisatepun
- Departments of Anesthesiology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Christina Ma
- Departments of Anesthesiology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Worakitti Lapisatepun
- Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vatche Agopian
- Departments of Surgery, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Christopher Wray
- Departments of Anesthesiology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Victor W Xia
- Departments of Anesthesiology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
7
|
Panackel C, Fawaz M, Jacob M, Raja K. Pulmonary Assessment of the Liver Transplant Recipient. J Clin Exp Hepatol 2023; 13:895-911. [PMID: 37693254 PMCID: PMC10483013 DOI: 10.1016/j.jceh.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/13/2023] [Indexed: 09/12/2023] Open
Abstract
Respiratory symptoms and hypoxemia can complicate chronic liver disease and portal hypertension. Various pulmonary disorders affecting the pleura, lung parenchyma, and pulmonary vasculature are seen in end-stage liver disease, complicating liver transplantation (LT). Approximately 8% of cirrhotic patients in an intensive care unit develop severe pulmonary problems. These disorders affect waiting list mortality and posttransplant outcomes. A thorough history, physical examination, and appropriate laboratory tests help diagnose and assess the severity to risk stratify pulmonary diseases before LT. Hepatopulmonary syndrome (HPS), portopulmonary hypertension (POPH), and hepatic hydrothorax (HH) are respiratory consequences specific to cirrhosis and portal hypertension. HPS is seen in 5-30% of cirrhosis cases and is characterized by impaired oxygenation due to intrapulmonary vascular dilatations and arteriovenous shunts. Severe HPS is an indication of LT. The majority of patients with HPS resolve their hypoxemia after LT. When pulmonary arterial hypertension occurs in patients with portal hypertension, it is called POPH. All other causes of pulmonary arterial hypertension should be ruled out before labeling as POPH. Since severe POPH (mean pulmonary artery pressure [mPAP] >50 mm Hg) is a relative contraindication for LT, it is crucial to screen for POPH before LT. Those with moderate POPH (mPAP >35 mm Hg), who improve with medical therapy, will benefit from LT. A transudative pleural effusion called hepatic hydrothorax (HH) is seen in 5-10% of people with cirrhosis. Refractory cases of HH benefit from LT. In recent years, increasing clinical expertise and advances in the medical field have resulted in better outcomes in patients with moderate to severe pulmonary disorders, who undergo LT.
Collapse
Affiliation(s)
| | - Mohammed Fawaz
- Integrated Liver Care, Aster Medcity, Kochi, Kerala, India
| | - Mathew Jacob
- Integrated Liver Care, Aster Medcity, Kochi, Kerala, India
| | - Kaiser Raja
- King's College Hospital London, Dubai Hills, Dubai, United Arab Emirates
| |
Collapse
|
8
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
9
|
Chen X, He Y, Yu Z, Zuo J, Huang Y, Ruan Y, Zheng X, Ma Y. Polydatin Glycosides Improve Monocrotaline-Induced Pulmonary Hypertension Injury by Inhibiting Endothelial-To-Mesenchymal Transition. Front Pharmacol 2022; 13:862017. [PMID: 35370672 PMCID: PMC8972160 DOI: 10.3389/fphar.2022.862017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To study the effect of polydatin on the injury of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT).Methods: SD rats were induced to develop PAH injury by a single subcutaneous injection of MCT (60 mg/kg). From the second day, rats in the administration group were orally given sildenafil (20 mg/kg) and polydatin (30 or 60 mg/kg) for 3 weeks. At the end of the experiment, right ventricular hypertrophy (RVH) index of SD rats was calculated, pathological damage was assessed by HE staining, transcription levels of target genes were detected by RT-PCR and Elisa, and expression levels of Endothelial-to-mesenchymal transition (EndMT) related proteins were detected by immunohistochemistry (IHC) and immunofluorescence (IF). Finally, molecular docking analysis was used to verify the interaction of polydatin on the main targets.Results: Polydatin could significantly restore the body function, reduce MCT-induced PAH injury, reduce serum biochemical indices; polydatin could effectively inhibit EndMT process by decreasing the expression of N-cadherin, β-catenin and vimentin; polydatin could down-regulate TAGLN expression and increase PECAM1 expression to reduce pulmonary vascular remodeling. The interaction between polydatin and EndMT target was confirmed by molecular docking operation.Conclusion: Pharmacological experiments combined with Combining molecular docking was first used to clarify that polydatin can reduce the pulmonary endothelial dysfunction and pulmonary vascular remodeling induced by MCT by inhibiting EndMT. The results of the study provide new ideas for the further treatment of PAH injury.
Collapse
Affiliation(s)
- Xing Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| | - Yao He
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Jianli Zuo
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Yan Huang
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing, China
- Pharmacy Department, Chongqing University Central Hospital, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing, China
- *Correspondence: Xing Chen, ; Xiaoyuan Zheng, ; Yu Ma,
| |
Collapse
|