1
|
Vilchinskaya N, Lim WF, Belova S, Roberts TC, Wood MJA, Lomonosova Y. Investigating Eukaryotic Elongation Factor 2 Kinase/Eukaryotic Translation Elongation Factor 2 Pathway Regulation and Its Role in Protein Synthesis Impairment during Disuse-Induced Skeletal Muscle Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2023:S0002-9440(23)00060-3. [PMID: 36871751 DOI: 10.1016/j.ajpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
The principal mechanism underlying the reduced rate of protein synthesis in atrophied skeletal muscle is largely unknown. Eukaryotic elongation factor 2 kinase (eEF2k) impairs the ability of eukaryotic translation elongation factor 2 (eEF2) to bind to the ribosome via T56 phosphorylation. Perturbations in the eEF2k/eEF2 pathway during various stages of disuse muscle atrophy have been investigated utilizing a rat hind limb suspension (HS) model. Two distinct components of eEF2k/eEF2 pathway misregulation were demonstrated, observing a significant (P < 0.01) increase in eEF2k mRNA expression as early as 1-day HS and in eEF2k protein level after 3-day HS. We set out to determine whether eEF2k activation is a Ca2+-dependent process with involvement of Cav1.1. The ratio of T56-phosphorylated/total eEF2 was robustly elevated after 3-day HS, which was completely reversed by BAPTA-AM and decreased by 1.7-fold (P < 0.05) by nifedipine. Transfection of C2C12 with pCMV-eEF2k and administration with small molecules were used to modulate eEF2k and eEF2 activity. More important, pharmacologic enhancement of eEF2 phosphorylation induced phosphorylated ribosomal protein S6 kinase (T389) up-regulation and restoration of global protein synthesis in the HS rats. Taken together, the eEF2k/eEF2 pathway is up-regulated during disuse muscle atrophy involving calcium-dependent activation of eEF2k partly via Cav1.1. The study provides evidence, in vitro and in vivo, of the eEF2k/eEF2 pathway impact on ribosomal protein S6 kinase activity as well as protein expression of key atrophy biomarkers, muscle atrophy F-box/atrogin-1 and muscle RING finger-1.
Collapse
Affiliation(s)
| | - Wooi Fang Lim
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | | | - Thomas C Roberts
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom
| | - Yulia Lomonosova
- Department of Paediatrics, University of Oxford Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom; Institute of Developmental and Regenerative Medicine, Oxford, United Kingdom; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Trunk Skeletal Muscle Changes on CT with Long-Duration Spaceflight. Ann Biomed Eng 2021; 49:1257-1266. [PMID: 33604800 DOI: 10.1007/s10439-021-02745-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
Astronauts exposed to microgravity for extended time are susceptible to trunk muscle atrophy, which may compromise strength and function on mission and after return. This study investigates changes in trunk skeletal muscle size and composition using computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) among 16 crewmembers (1 female, 15 male) on 4-6 month missions. Muscle cross-sectional area and muscle attenuation were measured using abdominal CT scans at pre-flight, post-flight return, 1 year post-flight, and 2-4 years post-flight. Longitudinal muscle changes were analyzed using mixed models. In six crewmembers, CT and DXA data were used to calculate subject height-normalized skeletal muscle indices. Changes in these indices were analyzed using paired t-tests and compared by imaging modality using Pearson correlations. Trunk muscle area decreased at post-flight return (- 4.7 ± 1.1%, p < 0.001) and recovered to pre-flight values at 1-4 years post-flight. Muscle attenuation changes were not significant. Skeletal muscle index from CT decreased (- 5.2 ± 1.0%, p = 0.004) while appendicular skeletal muscle index from DXA did not change significantly. In summary, trunk muscle atrophies with long-duration microgravity exposure but recovers to pre-flight values within 1-4 years. The CT measures highlight size decreases not detected with DXA, emphasizing the importance of advanced imaging modalities in assessing muscle health with spaceflight.
Collapse
|
3
|
Follow-up of ankle stiffness and electromechanical delay in immobilized children: Three cases studies. J Electromyogr Kinesiol 2010; 20:642-7. [DOI: 10.1016/j.jelekin.2010.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/18/2010] [Accepted: 02/02/2010] [Indexed: 11/19/2022] Open
|
4
|
Shin D, Finni T, Ahn S, Hodgson JA, Lee HD, Edgerton VR, Sinha S. Effect of chronic unloading and rehabilitation on human Achilles tendon properties: a velocity-encoded phase-contrast MRI study. J Appl Physiol (1985) 2008; 105:1179-86. [PMID: 18687975 DOI: 10.1152/japplphysiol.90699.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to measure and monitor changes in Achilles tendon mechanical properties and force production capability of triceps surae muscles after 4 wk of limb suspension and 6 wk of physical rehabilitation. Five healthy volunteers underwent unilateral lower limb suspension followed by weekly physiotherapy. A velocity-encoded, phase-contrast magnetic resonance imaging (VE-PC-MRI) technique was used to estimate the tendon strain as a function of force produced during the submaximal isometric contractions. After limb suspension, triceps surae muscle strength decreased to 53.2 +/- 15.6% (mean +/- SD) of the presuspension level (P < 0.05). Young's modulus, estimated from the slope of the tendon stress-strain relationship, decreased by 17.1% (from 140.50 +/- 29.33 to 119.95 +/- 36.07 MPa, P < 0.05), while the tendon transition point, reflecting the "toe region," increased by 55.7% (from 2.2 +/- 1.0% to 3.4 +/- 1.24%). Muscle strength, tendon stiffness, and transition point recovered to presuspension levels by the end of 6 wk of rehabilitation. Calcaneus movement was significant during the "isometric" contraction, accounting for 52.13 +/- 7.63% of the tendon displacement. Tendon cross-sectional area determined from anatomic magnetic resonance axial images remained unchanged, suggesting that the altered tendon elastic modulus and transition point were largely due to material deterioration. The increase in the transition point following chronic unloading as measured by the VE-PC-MRI technique has not been previously reported and offers new insights into the biomechanical changes that may occur in the tendon crimp structure.
Collapse
Affiliation(s)
- Dongsuk Shin
- Muscle Imaging & Modeling Laboratory, Department of Radiology, RIL, School of Medicine, University of California-San Diego, 3510 Dunhill Street, San Diego, CA 92121-0852, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Guillot C, Steinberg JG, Delliaux S, Kipson N, Jammes Y, Badier M. Physiological, histological and biochemical properties of rat skeletal muscles in response to hindlimb suspension. J Electromyogr Kinesiol 2008; 18:276-83. [PMID: 17158069 DOI: 10.1016/j.jelekin.2006.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/28/2022] Open
Abstract
In previous study, we found that the reduced exercise-induced production of reactive oxygen species (ROS) reported in slow-oxidative muscle of hypoxemic rats and also in chronic hypoxemic patients did not simply result from deconditioning. In control rats and after a 3-week period of hindlimb suspension (HS), the slow-oxidative (Soleus, SOL) and fast-glycolytic skeletal muscles (Extensor digitorum longus, EDL) were sampled. We determined the response to direct muscle stimulation (twitch stimulation (TS), Maximal force (Fmax)), twitch amplitude and maximal relaxation rate, tetanic frequency, endurance to fatigue after muscle stimulation (MS), the different fibre types based on their myofibrillar adenosinetriphosphatase (ATPase) activity, and the intra-muscular redox status (Thiobarbituric Acid Reactive Sustances: TBARS, reduced glutathione: GSH, reduced ascorbic acid: RAA). After the 3-w HS period: (1) the contractile properties were modified in SOL only (reduced Fmax and twitch amplitude, increased tetanic frequency); (2) the fibre typology was modified in both muscles (in SOL: increased proportion of IIa and IIc fibres, in EDL: increased proportion of IId/x fibres but decreased proportion of IIb fibres); and (3) only in SOL, the TBARS level increased and the GSH and RAA concentrations decreased at rest and after fatiguing MS. Thus, HS accentuates the exercise-induced ROS production in slow-oxidative muscle in a direction opposite to that measured in chronic hypoxemic rats. This strongly suggests that hypoxemia reduces the ROS production independently from any muscle disuse.
Collapse
Affiliation(s)
- Chantal Guillot
- Laboratoire de Physiopathologie Respiratoire EA 2201, Institut Jean Roche, Faculté de Médecine Nord, Bd. Pierre Dramard, 13916 Marseille, France
| | | | | | | | | | | |
Collapse
|
6
|
Edgerton VR, Roy RR, Hodgson JA, Day MK, Weiss J, Harkema SJ, Dobkin B, Garfinkel A, Konigsberg E, Koslovskaya I. How the science and engineering of spaceflight contribute to understanding the plasticity of spinal cord injury. ACTA ASTRONAUTICA 2000; 47:51-62. [PMID: 11543389 DOI: 10.1016/s0094-5765(00)00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.
Collapse
Affiliation(s)
- V R Edgerton
- Brain Research Institute, University of California, Los Angeles,USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ohira Y. Neuromuscular adaptation to microgravity environment. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:303-14. [PMID: 11016980 DOI: 10.2170/jjphysiol.50.303] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Morphological and/or functional char-acteristics of skeletal muscles have a greater adaptability in response to changes in environmental stimuli. For example, an atrophy associated with a shift of fiber characteristics toward fast-twitch type is a common adaptation of antigravity muscle to a microgravity environment. Neuromuscular responses and possible mechanisms of both neural and muscular adaptations to a microgravity environment are discussed in this article. Responses of morphological, metabolic, and contractile properties, as well as fiber phenotype, of muscles are briefly reviewed. Discussion is further extended to the patterns of electromyogram and tension development of muscle, responses of postural stability and locomotion, and/or motoneurons in order to study the mechanism for muscular adaptation to microgravity.
Collapse
Affiliation(s)
- Y Ohira
- Department of Physiology and Biomechanics, Research Center for Sports Training and Education, National Institute of Fitness and Sports, Kanoya, 891-2393, Japan.
| |
Collapse
|
8
|
Ohira Y, Yoshinaga T, Nonaka I, Ohara M, Yoshioka T, Yamashita-Goto K, Izumi R, Yasukawa K, Sekiguchi C, Shenkman BS, Kozzlovskaya IB. Histochemical responses of human soleus muscle fibers to long-term bedrest with or without countermeasures. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:41-7. [PMID: 10866696 DOI: 10.2170/jjphysiol.50.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Effects of 2- or 4-month bedrest in -6 degrees head-down tilt position with or without countermeasures on the histochemical properties of fiber phenotype and cross-sectional area (CSA) were studied in human soleus. The CSAs in slow fibers decreased approximately 32% during 4-month bedrest. This reduction was normalized after 1-month recovery. Although the reduction of percent slow fibers was not significant statistically, the percent intermediate fibers was significantly elevated 4 months after bedrest. Such shift in fiber type was not normalized following 1-month recovery. Effects of wearing an anti-g Penguin suit which has a modest, but continuous resistance at the knee and ankle (Penguin-1) or with knee resistance without loading on the ankle (Penguin-2) for 10 consecutive hours daily were also investigated during approximately 2 months of bedrest. The subjects performed knee extension and flexion for the last 15 min of each hour while in a supine position in bed. Bedrest-induced fiber atrophy was prevented in the Penguin-1 group but not the Penguin-2 group. Transformation of fiber type was not prevented in either Penguin suit group. It is suggested that long-term bedrest causes an atrophy and a shift of fiber phenotype toward fast-twitch type in human soleus. Data also indicated that loading on the muscle is an effective countermeasure for prevention of fiber atrophy but not fiber-type transformation.
Collapse
Affiliation(s)
- Y Ohira
- Department of Physiology and Biomechanics, National Institute of Fitness and Sports, Kanoya, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|