1
|
Caillet AH, Phillips ATM, Modenese L, Farina D. NeuroMechanics: Electrophysiological and computational methods to accurately estimate the neural drive to muscles in humans in vivo. J Electromyogr Kinesiol 2024; 76:102873. [PMID: 38518426 DOI: 10.1016/j.jelekin.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
The ultimate neural signal for muscle control is the neural drive sent from the spinal cord to muscles. This neural signal comprises the ensemble of action potentials discharged by the active spinal motoneurons, which is transmitted to the innervated muscle fibres to generate forces. Accurately estimating the neural drive to muscles in humans in vivo is challenging since it requires the identification of the activity of a sample of motor units (MUs) that is representative of the active MU population. Current electrophysiological recordings usually fail in this task by identifying small MU samples with over-representation of higher-threshold with respect to lower-threshold MUs. Here, we describe recent advances in electrophysiological methods that allow the identification of more representative samples of greater numbers of MUs than previously possible. This is obtained with large and very dense arrays of electromyographic electrodes. Moreover, recently developed computational methods of data augmentation further extend experimental MU samples to infer the activity of the full MU pool. In conclusion, the combination of new electrode technologies and computational modelling allows for an accurate estimate of the neural drive to muscles and opens new perspectives in the study of the neural control of movement and in neural interfacing.
Collapse
Affiliation(s)
| | - Andrew T M Phillips
- Department of Civil and Environmental Engineering, Imperial College London, UK
| | - Luca Modenese
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia.
| | - Dario Farina
- Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
2
|
Cohen JW, Vieira TM, Ivanova TD, Garland SJ. Differential behavior of distinct motoneuron pools that innervate the triceps surae. J Neurophysiol 2023; 129:272-284. [PMID: 36475977 DOI: 10.1152/jn.00336.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It has been shown that when humans lean in various directions, the central nervous system (CNS) recruits different motoneuron pools for task completion; common units that are active during different leaning directions, and unique units that are active in only one leaning direction. We used high-density surface electromyography (HD-sEMG) to examine if motor unit (MU) firing behavior was dependent on leaning direction, muscle (medial and lateral gastrocnemius; soleus), limits of stability, or whether a MU is considered common or unique. Fourteen healthy participants stood on a force platform and maintained their center of pressure in five different leaning directions. HD-sEMG recordings were decomposed into MU action potentials and the average firing rate (AFR), coefficient of variation (CoVISI), and firing intermittency were calculated on the MU spike trains. During the 30°-90° leaning directions both unique units and common units had higher firing rates (F = 31.31, P < 0.0001). However, the unique units achieved higher firing rates compared with the common units (mean estimate difference = 3.48 Hz, P < 0.0001). The CoVISI increased across directions for the unique units but not for the common units (F = 23.65, P < 0.0001). Finally, intermittent activation of MUs was dependent on the leaning direction (F = 11.15, P < 0.0001), with less intermittent activity occurring during diagonal and forward-leaning directions. These results provide evidence that the CNS can preferentially control separate motoneuron pools within the ankle plantarflexors during voluntary leaning tasks for the maintenance of standing balance.NEW & NOTEWORTHY In this study, we demonstrate that the different subpopulations of motor units within the three muscles comprising the ankle plantarflexors behave differently during multidirectional leaning. Our results suggest that the central nervous system has the capability to control distinct subpopulations of motor units to meet the force requirements necessary for leaning. This may allow for a precise, efficient, and flexible control strategy for the maintenance of standing balance.
Collapse
Affiliation(s)
- Joshua W Cohen
- School of Kinesiology, Western University, London, Ontario, Canada.,Collaborative Specialization in Musculoskeletal Health Research, Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Taian M Vieira
- Laboratorio di Ingegneria del Sistema Neuromuscolare (LISiN), Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
| | - Tanya D Ivanova
- Physical Therapy, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - S Jayne Garland
- Physical Therapy, Faculty of Health Sciences, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Maintenance of standing posture during multi-directional leaning demands the recruitment of task-specific motor units in the ankle plantarflexors. Exp Brain Res 2021; 239:2569-2581. [PMID: 34191118 DOI: 10.1007/s00221-021-06154-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
The purpose of this study is to investigate whether regional modulation of the ankle plantarflexors during standing was related to the recruitment of motor units associated with force direction. Fourteen participants performed a multi-directional leaning task in standing. Participants stood on a force platform and maintained their center of pressure in five different target directions. Motor unit firings were extracted by decomposition of high-density surface electromyograms recorded from the ankle plantarflexor muscles. The motor unit barycentre, defined as the weighted mean of the maximal average rectified values across columns and rows, was used to evaluate the medio-lateral and proximo-distal changes in the surface representation of single motor units across different leaning target directions. Using a motor unit tracking analysis, groups of motor units were identified as being common or unique across the target directions. The leaning directions had an effect on the spatial representations of motor units in the medial gastrocnemius and soleus (p < 0.05), but not in the lateral gastrocnemius (p > 0.05). Motor unit action potentials were represented in the medial and proximal aspects of the muscles during forward vs. lateral leans. Further analysis determined that the common motor units were found in similar spatial locations across the target directions, whereas newly recruited unique motor units were found in different spatial locations according to target direction (p < 0.05). The central nervous system may possess the ability to activate different groups of motor units according to task demands to meet the force-direction requirements of the leaning task.
Collapse
|
4
|
Bubnys A, Kandel H, Kao LM, Pfaff D, Tabansky I. Hindbrain V2a Neurons Pattern Rhythmic Activity of Motor Neurons in a Reticulospinal Coculture. Front Neurosci 2019; 13:1077. [PMID: 31680817 PMCID: PMC6811747 DOI: 10.3389/fnins.2019.01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
As the capacity to isolate distinct neuronal cell types has advanced over the past several decades, new two- and three-dimensional in vitro models of the interactions between different brain regions have expanded our understanding of human neurobiology and the origins of disease. These cultures develop distinctive patterns of activity, but the extent that these patterns are determined by the molecular identity of individual cell types versus the specific pattern of network connectivity is unclear. To address the question of how individual cell types interact in vitro, we developed a simplified culture using two excitatory neuronal subtypes known to participate in the in vivo reticulospinal circuit: HB9+ spinal motor neurons and Chx10+ hindbrain V2a neurons. Here, we report the emergence of cell type-specific patterns of activity in culture; on their own, Chx10+ neurons developed regular, synchronized bursts of activity that recruited neurons across the entire culture, whereas HB9+ neuron activity consisted of an irregular pattern. When these two subtypes were cocultured, HB9+ neurons developed synchronized network bursts that were precisely correlated with Chx10+ neuron activity, thereby recreating an aspect of Chx10+ neurons' role in driving motor activity. These bursts were dependent on AMPA receptors. Our results demonstrate that the molecular classification of the neurons comprising in vitro networks is a crucial determinant of their activity. It is therefore possible to improve both the reproducibility and the applicability of in vitro neurobiological and disease models by carefully controlling the constituent mixtures of neuronal subtypes.
Collapse
Affiliation(s)
- Adele Bubnys
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Lee Ming Kao
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Inna Tabansky
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
- Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
5
|
Van Acker GM, Luchies CW, Cheney PD. Timing of Cortico-Muscle Transmission During Active Movement. Cereb Cortex 2015. [PMID: 26209849 DOI: 10.1093/cercor/bhv151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have reported large disparities between short cortico-muscle conduction latencies and long recorded delays between cortical firing and evoked muscle activity. Using methods such as spike- and stimulus-triggered averaging of electromyographic (EMG) activity, previous studies have shown that the time delay between corticomotoneuronal (CM) cell firing and onset of facilitation of forelimb muscle activity ranges from 6.7 to 9.8 ms, depending on the muscle group tested. In contrast, numerous studies have reported delays of 60-122 ms between cortical cell firing onset and either EMG or movement onset during motor tasks. To further investigate this disparity, we simulated rapid active movement by applying frequency-modulated stimulus trains to M1 cortical sites in a rhesus macaque performing a movement task. This yielded corresponding EMG modulations, the latency of which could be measured relative to the stimulus modulations. The overall mean delay from stimulus frequency modulation to EMG modulation was 11.5 ± 5.6 ms, matching closely the conduction time through the cortico-muscle pathway (12.6 ± 2.0 ms) derived from poststimulus facilitation peaks computed at the same sites. We conclude that, during active movement, the delay between modulated M1 cortical output and its impact on muscle activity approaches the physical cortico-muscle conduction time.
Collapse
Affiliation(s)
- Gustaf M Van Acker
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carl W Luchies
- Bioengineering Graduate Program Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Paul D Cheney
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Stuart DG, Brownstone RM. The beginning of intracellular recording in spinal neurons: facts, reflections, and speculations. Brain Res 2011; 1409:62-92. [PMID: 21782158 PMCID: PMC5061568 DOI: 10.1016/j.brainres.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles.
Collapse
Affiliation(s)
- Douglas G Stuart
- Department of Physiology, University of Arizona, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
7
|
Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008; 14:264-75. [PMID: 18381974 PMCID: PMC3326417 DOI: 10.1177/1073858408314986] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Persistent inward currents (PICs) are present in many types of neurons and likely have diverse functions. In spinal motoneurons, PICs are especially strong, primarily located in dendritic regions, and subject to particularly strong neuromodulation by the monoamines serotonin and norepinephrine. Because motoneurons drive muscle fibers, it has been possible to study the functional role of their PICs in motor output and to identify PIC-mediated effects on motoneuron firing patterns in human subjects. The PIC markedly amplifies synaptic input, up to fivefold or more, depending on the level of monoaminergic input. PICs also tend to greatly prolong input time course, allowing brief inputs to initiate long-lasting self-sustained firing (i.e., bistable behavior). PIC deactivation usually requires inhibitory input and PIC amplitude can increase to repeated activation. All of these behaviors markedly increase motoneuron excitability. Thus, in the absence of monoaminergic input, motoneuron excitability is very low. Yet PICs have another effect: once active, they tend to sharply limit efficacy of additional synaptic input. All of these PIC effects have been detected in motoneuron firing patterns in human subjects and, hence, PICs are likely a fundamental component of normal motor output.
Collapse
Affiliation(s)
- C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
8
|
Lee DC, Jensen AL, Schiefer MA, Morgan CW, Grill WM. Structural mechanisms to produce differential dendritic gains. Brain Res 2005; 1033:117-27. [PMID: 15694915 DOI: 10.1016/j.brainres.2004.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 11/30/2022]
Abstract
The axons of sacral parasympathetic preganglionic neurons (PGNs) originate on a primary dendrite between 10 and 110 mum from the soma. Therefore, it was hypothesized that the location of the axon origin would impact the relative efficacy of ipsilateral and contralateral synaptic inputs. The morphology of two PGNs was reconstructed, and the transfer impedance was used to quantify the influence of synaptic inputs on the transmembrane potential at the axon initial segment. The ratio of ipsilateral transfer impedance to contralateral transfer impedance (termed the relative gain) was increased by 14-29% for axons originating from the dendrite vs. axons originating from the soma. The addition of 50 synchronized "gating" synapses on the proximal dendrites increased the relative gain by 17-38% when the axon originated from the dendrite, but only by 11-15% when the axon originated from the soma. The efficacy of synaptic inputs and the ability of proximal gating synapses to regulate synaptic efficacy were strongly influenced by the site of origin of the axon. The position of axon origin is an effective structural mechanism to regulate the relative efficacy of synaptic inputs arriving at different locations on the dendritic tree.
Collapse
Affiliation(s)
- Dongchul C Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
We have developed a model for the rat phrenic motor neuron (PMN) that robustly replicates many experimentally observed behaviors of PMNs in response to pharmacological, ionic, and electrical perturbations using a single set of parameters. Our model suggests that the after-depolarization (ADP) response seen in action potentials is a result of the slow deactivation of the fast sodium channel in the range of the ADP coupled with the activation of the L-type calcium channel (I(CaL)). This current and its interactions with the small and large conductance calcium-activated potassium currents (I(KCaSK) and I(KCaBK), respectively) is also important in the generation of spike frequency adaptation in the repetitive firing mode of activity. Other aspects of the model conform very well to experimental observations in both the action potential and repetitive firing mode of activity, including the role of I(KCaSK) in the medium after-hyperpolarization (AHP) and the role of I(KCaBK) in the fast AHP. We have made a number of predictions using the model, including the characterization of two putative sodium currents (fast and persistent), as well as functional roles for the N- and T-type calcium currents.
Collapse
Affiliation(s)
- Behrang Amini
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|