1
|
He H, Yuan Q, Bie J, Wallace RL, Yannie PJ, Wang J, Lancina MG, Zolotarskaya OY, Korzun W, Yang H, Ghosh S. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis. Transl Res 2018; 193:13-30. [PMID: 29172034 PMCID: PMC6198660 DOI: 10.1016/j.trsl.2017.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque burden.
Collapse
Affiliation(s)
- Hongliang He
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - Quan Yuan
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Jinghua Bie
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Ryan L Wallace
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Va
| | - Jing Wang
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va
| | | | - Olga Yu Zolotarskaya
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va
| | - William Korzun
- Dept. of Clinical and Laboratory Sciences, VCU Medical Center, Richmond, Va
| | - Hu Yang
- Dept. of Chemical and Life Science Engineering, Virginia Commonwealth University (VCU), Richmond, Va; Dept. of Pharmaceutics, VCU, Richmond, Va; Massey Cancer Center, VCU Medical Center, Richmond, Va
| | - Shobha Ghosh
- Dept. of Internal Medicine, VCU Medical Center, Richmond, Va; Hunter Homes McGuire VA Medical Center, Richmond, Va.
| |
Collapse
|
2
|
Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg Med Chem 2017; 25:4487-4496. [PMID: 28705434 DOI: 10.1016/j.bmc.2017.06.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/16/2017] [Accepted: 06/25/2017] [Indexed: 01/06/2023]
Abstract
The surface properties of nanoparticles (NPs) are a major factor that influences how these nanomaterials interact with biological systems. Interactions between NPs and macrophages of the reticuloendothelial system (RES) can reduce the efficacy of NP diagnostics and therapeutics. Traditionally, to limit NP clearance by the RES system, the NP surface is neutralized with molecules like poly(ethylene glycol) (PEG) which are known to resist protein adsorption and RES clearance. Unfortunately, PEG modification is not without drawbacks including difficulties with the synthesis and associations with immune reactions. To overcome some of these obstacles, we neutralized the NP surface by acetylation and compared this modification to PEGylation for RES clearance and tumor-specific targeting. We found that acetylation was comparable to PEGylation in reducing RES clearance. Additionally, we found that dendrimer acetylation did not impact folic acid (FA)-mediated targeting of tumor cells whereas PEG surface modification reduced the targeting ability of the NP. These results clarify the impact of different NP surface modifications on RES clearance and cell-specific targeting and provide insights into the design of more effective NPs.
Collapse
|
3
|
Zong H, Shah D, Selwa K, Tsuchida RE, Rattan R, Mohan J, Stein AB, Otis JB, Goonewardena SN. Design and Evaluation of Tumor-Specific Dendrimer Epigenetic Therapeutics. ChemistryOpen 2015; 4:335-41. [PMID: 26246996 PMCID: PMC4522184 DOI: 10.1002/open.201402141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/08/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are promising therapeutics for cancer. HDACi alter the epigenetic state of tumors and provide a unique approach to treat cancer. Although studies with HDACi have shown promise in some cancers, variable efficacy and off-target effects have limited their use. To overcome some of the challenges of traditional HDACi, we sought to use a tumor-specific dendrimer scaffold to deliver HDACi directly to cancer cells. Here we report the design and evaluation of tumor-specific dendrimer-HDACi conjugates. The HDACi was conjugated to the dendrimer using an ester linkage through its hydroxamic acid group, inactivating the HDACi until it is released from the dendrimer. Using a cancer cell model, we demonstrate the functionality of the tumor-specific dendrimer-HDACi conjugates. Furthermore, we demonstrate that unlike traditional HDACi, dendrimer-HDACi conjugates do not affect tumor-associated macrophages, a recently recognized mechanism through which drug resistance emerges. We anticipate that this new class of cell-specific epigenetic therapeutics will have tremendous potential in the treatment of cancer.
Collapse
Affiliation(s)
- Hong Zong
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Dhavan Shah
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Katherine Selwa
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Ryan E Tsuchida
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Rahul Rattan
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Jay Mohan
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Adam B Stein
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, CVC Room 2547 1500 E. Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA)
| | - James B Otis
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| | - Sascha N Goonewardena
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, CVC Room 2547 1500 E. Medical Center Drive, SPC 5853, Ann Arbor, MI, 48109-5853, USA) ; Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan, Room 9220C MSRBIII 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA)
| |
Collapse
|
4
|
Ito T, Nakamura T, Kusaka E, Kurihara R, Tanabe K. Controlling Localization and Excretion of Nanoparticles by Click Modification of the Surface Chemical Structures inside Living Cells. Chempluschem 2015; 80:796-799. [DOI: 10.1002/cplu.201402436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/11/2022]
|
5
|
Thandu M, Rapozzi V, Xodo L, Albericio F, Comuzzi C, Cavalli S. “Clicking” Porphyrins to Magnetic Nanoparticles for Photodynamic Therapy. Chempluschem 2013; 79:90-98. [DOI: 10.1002/cplu.201300276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 11/10/2022]
|