1
|
Shimoji H, Aoyama Y, Inage K, Nakamura M, Yanagihara T, Yuhara K, Kitagawa Y, Hasegawa Y, Ito S, Tanaka K, Imoto H, Naka K. Highly Efficient and Thermally Durable Luminescence of 1D Eu 3+ Coordination Polymers with Arsenic Bridging Ligands. Chemistry 2024; 30:e202400615. [PMID: 38591237 DOI: 10.1002/chem.202400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
In this work, bisarsine oxides were evaluated as novel bridging ligands, aiming to develop practical and efficient luminescent lanthanide coordination polymers. We have synthesized one-dimensional (1D) Eu3+ coordination polymers that incorporate bisarsine oxide bridging ligands and hexafluoroacetylacetonate anions. These polymers exhibited a denser packing of chains compared to analogous polymers bridged with bisphosphine oxides. The coordination polymers demonstrated exceptional thermal stability and substantial emission quantum yields. Additionally, the bisarsine oxides induced a pronounced polarization effect, facilitating a sensitive electric dipole transition that yields considerably narrow band red emission. Remarkably, the Eu3+ coordination polymers with bisarsine oxides maintained intense emission even at 550 K. A distinctive feature of these polymers is their heating-induced emission enhancement observed when the temperature was increased from 300 K to 400 K.
Collapse
Affiliation(s)
- Haruki Shimoji
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuto Aoyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kota Inage
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Masashi Nakamura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takumi Yanagihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- FOREST, JST, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
2
|
Saloutin VI, Edilova YO, Kudyakova YS, Burgart YV, Bazhin DN. Heterometallic Molecular Architectures Based on Fluorinated β-Diketone Ligands. Molecules 2022; 27:7894. [PMID: 36431999 PMCID: PMC9695714 DOI: 10.3390/molecules27227894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
This review summarizes the data on the synthesis of coordination compounds containing two or more different metal ions based on fluorinated β-diketonates. Heterometallic systems are of high interest in terms of their potential use in catalysis, medicine and diagnostics, as well as in the development of effective sensor devices and functional materials. Having a rich history in coordination chemistry, fluorinated β-diketones are well-known ligands generating a wide variety of heterometallic complexes. In this context, we focused on both the synthetic approaches to β-dicarbonyl ligands with additional coordination centers and their possible transformations in complexation reactions. The review describes bi- and polynuclear structures in which β-diketones are the key building blocks in the formation of a heterometallic framework, including the examples of both homo- and heteroleptic complexes.
Collapse
Affiliation(s)
- Viktor I. Saloutin
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yulia O. Edilova
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yulia S. Kudyakova
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
| | - Denis N. Bazhin
- Postovsky Institute of Organic Synthesis, The Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620108, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
3
|
Xu K, Xie X, Zheng LM. Iridium-lanthanide complexes: Structures, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Aleem AR, Liu J, Wang J, Wang J, Zhao Y, Wang Y, Wang Y, Wang W, Rehman FU, Kipper MJ, Tang J. Selective Sensing of Cu 2+ and Fe 3+ Ions with Vis-Excitation using Fluorescent Eu 3+-Induced Aggregates of Polysaccharides (EIAP) in Mammalian Cells and Aqueous Systems. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122991. [PMID: 32937702 DOI: 10.1016/j.jhazmat.2020.122991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Fluorescent lanthanide complexes have favorable features for fluorescence-based sensors compared to organic fluorophores and quantum dots. They exhibit very long fluorescence lifetimes, sharp emission bands, and stability with respect to photo-bleaching, without blinking. However, these complexes are usually hydrophobic, and many are excited by UV light, making them hazardous and incompatible with aqueous environments and biological samples. In this work, the strong fluorescent Eu3+-induced aggregates of polysaccharides (EIAP) was used to improve their aqueous solubility, and to tune the appropriate excitation wavelength in the visible range for avoiding toxicity of UV light in biological applications. The complexes exhibit bright fluorescence with an excitation maximum in the visible range, near 405 nm. EIAP 3 also exhibit rapid quenching response in the presence of transition metal ions. This enables the detection of Cu2+ and Fe3+ below 1 ppm. The reverse of quenching response of copper by the addition of a chelating agent makes it possible to recover the fluorescence property. Successfully, the EIAP exhibit cytocompatibility with mammalian cells. Thus, these new polysaccharide-based complexes have the potential for rapid, sensitive and selective metal ion sensors for the environmental systems.
Collapse
Affiliation(s)
- Abdur Raheem Aleem
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jin Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Jing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yue Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China
| | - Faisal Ul Rehman
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People's Republic of China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
5
|
Wei C, Sun B, Zhao Z, Cai Z, Liu J, Tan Y, Wei H, Liu Z, Bian Z, Huang C. A Family of Highly Emissive Lanthanide Complexes Constructed with 6-(Diphenylphosphoryl)picolinate. Inorg Chem 2020; 59:8800-8808. [DOI: 10.1021/acs.inorgchem.0c00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Wei
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boxun Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zelun Cai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajia Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Tan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huibo Wei
- Jiangsu JITRI Molecular Engineering Institute Co., Ltd., 88 Xianshi Road, Changshu 215500, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhui Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Hyre AS, Doerrer LH. A structural and spectroscopic overview of molecular lanthanide complexes with fluorinated O-donor ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Crowston BJ, Shipp JD, Chekulaev D, McKenzie LK, Jones C, Weinstein JA, Meijer AJH, Bryant HE, Natrajan L, Woodward A, Ward MD. Heteronuclear d-d and d-f Ru(ii)/M complexes [M = Gd(iii), Yb(iii), Nd(iii), Zn(ii) or Mn(ii)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies. Dalton Trans 2019; 48:6132-6152. [PMID: 30990506 DOI: 10.1039/c9dt00954j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(iii), Nd(iii), Yb(iii)] or another d-block ion [Zn(ii), Mn(ii)]. When M = Gd(iii) or Mn(ii) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(ii) unit provides the possibility of two different types of imaging modality in a single molecular probe. In the case of Ru·Mn and Ru·Mn2 the Ru(ii)-based phosphorescence is substantially reduced compared to the control complexes Ru·Zn and Ru·Zn2 due to the quenching effect of the Mn(ii) centres. Ultrafast transient absorption spectroscopy studies on Ru·Mn (and Ru·Zn as a non-quenched control) reveal the occurrence of fast (<1 ns) PET in Ru·Mn, from the Mn(ii) ion to the Ru(ii)-based 3MLCT state, i.e. MnII-(phen˙-)-RuIII → MnIII-(phen˙-)-RuII; the resulting MnIII-(phen˙-) state decays with τ ≈ 5 ns and is non-luminescent. This occurs in conformers when an ET pathway is facilitated by a planar, conjugated bridging ligand conformation connecting the two units across the alkyne bridge but does not occur in conformers where the two units are electronically decoupled by a twisted conformation of the bridging ligand. Computational studies (DFT) on Ru·Mn confirmed both the occurrence of the PET quenching pathway and its dependence on molecular conformation. In the complexes Ru·Ln and Ru·Ln2 (Ln = Nd, Yb), sensitised near-infrared luminescence from Nd(iii) or Yb(iii) is observed following photoinduced energy-transfer from the Ru(ii) core, with Ru → Nd energy-transfer being faster than Ru → Yb energy-transfer due to the higher density of energy-accepting states on Nd(iii).
Collapse
|
8
|
|
9
|
Jiang W, Hong C, Wei H, Wu Z, Bian Z, Huang C. A green-emitting iridium complex used for sensitizing europium ion with high quantum yield. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
WEI C, YAO X, SUN B, CAI Z, ZHAO Z, CHEN M, WEI H, LIU Z, BIAN Z, HUANG C. Evaporable luminescent lanthanide complexes based on novel tridentate ligand. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(16)60166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Jana A, Crowston BJ, Shewring JR, McKenzie LK, Bryant HE, Botchway SW, Ward AD, Amoroso AJ, Baggaley E, Ward MD. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing. Inorg Chem 2016; 55:5623-33. [PMID: 27219675 DOI: 10.1021/acs.inorgchem.6b00702] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).
Collapse
Affiliation(s)
- Atanu Jana
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Bethany J Crowston
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Jonathan R Shewring
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom.,Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Helen E Bryant
- Department of Oncology & Metabolism, University of Sheffield , Sheffield, S10 2RX, United Kingdom
| | - Stanley W Botchway
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Andrew D Ward
- Rutherford Appleton Laboratory, STFC, Research Complex at Harwell, Harwell Science and Innovation Campus , Didcot, OX11 0FA, United Kingdom
| | - Angelo J Amoroso
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| | - Michael D Ward
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| |
Collapse
|