1
|
Periyathambi P, Balian A, Hu Z, Padro D, Hernandez LI, Uvdal K, Duarte J, Hernandez FJ. Activatable MRI probes for the specific detection of bacteria. Anal Bioanal Chem 2021; 413:7353-7362. [PMID: 34704109 PMCID: PMC8626403 DOI: 10.1007/s00216-021-03710-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Activatable fluorescent probes have been successfully used as molecular tools for biomedical research in the last decades. Fluorescent probes allow the detection of molecular events, providing an extraordinary platform for protein and cellular research. Nevertheless, most of the fluorescent probes reported are susceptible to interferences from endogenous fluorescence (background signal) and limited tissue penetration is expected. These drawbacks prevent the use of fluorescent tracers in the clinical setting. To overcome the limitation of fluorescent probes, we and others have developed activatable magnetic resonance probes. Herein, we report for the first time, an oligonucleotide-based probe with the capability to detect bacteria using magnetic resonance imaging (MRI). The activatable MRI probe consists of a specific oligonucleotide that targets micrococcal nuclease (MN), a nuclease derived from Staphylococcus aureus. The oligonucleotide is flanked by a superparamagnetic iron oxide nanoparticle (SPION) at one end, and by a dendron functionalized with several gadolinium complexes as enhancers, at the other end. Therefore, only upon recognition of the MRI probe by the specific bacteria is the probe activated and the MRI signal can be detected. This approach may be widely applied to detect bacterial infections or other human conditions with the potential to be translated into the clinic as an activatable contrast agent.
Collapse
Affiliation(s)
- Prabu Periyathambi
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Alien Balian
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain
| | - Luiza I Hernandez
- Department of Clinical and Experimental Medicine, Linkӧping University, Linköping, Sweden
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden
| | - Joao Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22181, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linkӧping University, 58185, Linköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
2
|
Connah L, Angelovski G. Synergy of Key Properties Promotes Dendrimer Conjugates as Prospective Ratiometric Bioresponsive Magnetic Resonance Imaging Probes. Biomacromolecules 2018; 19:4668-4676. [DOI: 10.1021/acs.biomac.8b01425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liam Connah
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, D-72076 Tuebingen, Germany
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, D-72076 Tuebingen, Germany
| |
Collapse
|
3
|
Gündüz S, Savić T, Pohmann R, Logothetis NK, Scheffler K, Angelovski G. Ratiometric Method for Rapid Monitoring of Biological Processes Using Bioresponsive MRI Contrast Agents. ACS Sens 2016; 1:483-487. [PMID: 29261290 DOI: 10.1021/acssensors.6b00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bioresponsive magnetic resonance imaging (MRI) contrast agents hold great potential for noninvasive tracking of essential biological processes. Consequently, a number of MR sensors for several imaging protocols have been developed, attempting to produce the maximal signal difference for a given event. Here we introduce an approach which could substantially improve the detection of physiological events with fast kinetics. We developed a nanosized, calcium-sensitive dendrimeric probe that changes longitudinal and transverse relaxation times with different magnitudes. The change in their ratio is rapidly recorded by means of a balanced steady-state free precession (bSSFP) imaging protocol. The employed methodology results in an almost four times greater signal gain per unit of time as compared to conventional T1-weighted imaging with small sized contrast agents. Furthermore, it is suitable for high resolution functional MRI at high magnetic fields. This methodology could evolve into a valuable tool for rapid monitoring of various biological events.
Collapse
Affiliation(s)
| | | | | | - Nikos K. Logothetis
- Department
of Imaging Science and Biomedical Engineering, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Klaus Scheffler
- Department
for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|