1
|
Li Q, Xu BW, Zou YM, Niu RJ, Chen JX, Zhang WH, Young DJ. Nanoscale Two-Dimensional Fe II- and Co II-Based Metal-Organic Frameworks of Porphyrin Ligand for the Photodynamic Therapy of Breast Cancer. Molecules 2023; 28:2125. [PMID: 36903368 PMCID: PMC10003974 DOI: 10.3390/molecules28052125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The delivery of biocompatible reagents into cancer cells can elicit an anticancer effect by taking advantage of the unique characteristics of the tumor microenvironment (TME). In this work, we report that nanoscale two-dimensional FeII- and CoII-based metal-organic frameworks (NMOFs) of porphyrin ligand meso-tetrakis (6-(hydroxymethyl) pyridin-3-yl) porphyrin (THPP) can catalyze the generation of hydroxyl radicals (•OH) and O2 in the presence of H2O2 that is overexpressed in the TME. Photodynamic therapy consumes the generated O2 to produce a singlet oxygen (1O2). Both •OH and 1O2 are reactive oxygen species (ROS) that inhibit cancer cell proliferation. The FeII- and CoII-based NMOFs were non-toxic in the dark but cytotoxic when irradiated with 660 nm light. This preliminary work points to the potential of porphyrin-based ligands of transition metals as anticancer drugs by synergizing different therapeutic modalities.
Collapse
Affiliation(s)
- Qing Li
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Bo-Wei Xu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi-Ming Zou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ru-Jie Niu
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering, and Materials Science, Soochow University, Suzhou 215123, China
| | - David James. Young
- Faculty of Science and Technology, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
2
|
Ma PP, Hao ZM, Wang P, Zhang WH, Young DJ. trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021; 16:2993-3000. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Nanoformulations of mononuclear Pt complexes cis-PtCl2 (PPh3 )2 (1), [Pt(PPh3 )2 (L-Cys)] ⋅ H2 O (3, L-Cys=L-cysteinate), trans-PtCl2 (PPh2 PhNMe2 )2 (4; PPh2 PhNMe2 =4-(dimethylamine)triphenylphosphine), trans-PtI2 (PPh2 PhNMe2 )2 (5) and dinuclear Pt cluster Pt2 (μ-S)2 (PPh3 )4 (2) have comparable cytotoxicity to cisplatin against murine melanoma cell line B16F10. Masking of these discrete molecular entities within the hydrophobic core of Pluronic® F-127 significantly boosted their solubility and stability, ensuring efficient cellular uptake, giving in vitro IC50 values in the range of 0.87-11.23 μM. These results highlight the potential therapeutic value of Pt complexes featuring stable Pt-P bonds in nanocomposite formulations with biocompatible amphiphilic polymers.
Collapse
Affiliation(s)
- Pan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Wei Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - David J Young
- College of Engineering Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
4
|
Enhancing the Physiochemical Properties of Puerarin via L-Proline Co-Crystallization: Synthesis, Characterization, and Dissolution Studies of Two Phases of Pharmaceutical Co-Crystals. Int J Mol Sci 2021; 22:ijms22020928. [PMID: 33477727 PMCID: PMC7832312 DOI: 10.3390/ijms22020928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Puerarin (PUE) is a Chinese traditional medicine known to enhance glucose uptake into the insulin cells to downregulate the blood glucose levels in the treatment of type II diabetes. Nevertheless, the bioavailability of pristine PUE is limited due to its poor solubility and low intestinal permeability. In this work, we demonstrate that the solubility of PUE can be significantly enhanced via its co-crystallization with L-Proline (PRO). Two crystalline phases, namely, the solvate-free form [PUE][PRO] (I) and the solvated form [PUE]2[PRO]∙EtOH∙(H2O)2 (II) are isolated. These two phases are characterized by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Fourier-transformed infrared (FT-IR) spectra, nuclear magnetic resonance (NMR), and thermogravimetric analysis in association with differential scanning calorimetry (TGA-DSC). The solubility and dissolution rate of both I and II in water, gastrointestinal tract at pH 1.2, and phosphate buffer at pH 6.8 indicates a nearly doubled increase as compared to the pristine PUE. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay of pristine PUE, I and II against murine colon cancer cell lines CT-26 and human kidney cell lines HEK-293 indicated that neither compound exhibits obvious cytotoxicity after 24 h. This work showcases that the readily available and biocompatible PRO can be a promising adjuvant to enhance the physicochemical properties of PUE toward orally administered drug formulation with improved pharmacokinetics.
Collapse
|
5
|
On the Single-Crystal Structure of Tenofovir Alafenamide Mono-Fumarate: A Metastable Phase Featuring a Mixture of Co-Crystal and Salt. Int J Mol Sci 2020; 21:ijms21239213. [PMID: 33287166 PMCID: PMC7730268 DOI: 10.3390/ijms21239213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Tenofovir alafenamide (TAF) is a prodrug of tenofovir as a potent nucleotide reverse transcriptase inhibitor. It serves as the key component of Genvoya® for the first-line treatment of human immunodeficiency virus infection (HIV) and is the active component of Vemlidy® for the treatment of chronic hepatitis B. Vemlidy® is also a monotherapeutic regimen formulated as TAF hemifumarate (1; TAF:fumarate = 2:1). In this work, we report for the first time the single-crystal structure of TAF fumarate hemihydrate (2, TAF:fumarate:H2O = 2:2:1). Compound 2 is initially documented as a salt in which one proton of the fumaric acid migrates to the amine group of the adenine moiety in TAF. It was recently proposed that ca. 20–30% proton is transferred to the N atom on the aromatic adenine backbone. We herein provide definitive single-crystal X-ray diffraction results to confirm that 2, though phase pure, is formed as a mixture of co-crystal (75%) and salt (25%). It features two pairs of TAF fumarates, wherein one of the four H atoms on the fumaric acid is transferred to the N atom of the adjacent adenine moiety while the other three carboxylates remain in their intrinsic acid form. Compound 2 is a metastable phase during the preparation of 1 and can be isolated by halting the reaction during the refluxing of TAF and fumaric acid in acetonitrile (MeCN). Our report complements the previous characterizations of TAF monofumarate, and its elusive structural patterns are finally deciphered.
Collapse
|
6
|
A Heterometallic Three-Dimensional Metal-Organic Framework Bearing an Unprecedented One-Dimensional Branched-Chain Secondary Building Unit. Molecules 2020; 25:molecules25092190. [PMID: 32392885 PMCID: PMC7248776 DOI: 10.3390/molecules25092190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/01/2023] Open
Abstract
A heterometallic metal−organic framework (MOF) of [Cd6Ca4(BTB)6(HCOO)2(DEF)2(H2O)12]∙DEF∙xSol (1, H3BTB = benzene-1,3,5-tribenzoic acid; DEF = N,N′-diethylformamide; xSol. = undefined solvates within the pore) was prepared by solvothermal reaction of Cd(NO3)2·4H2O, CaO and H3BTB in a mixed solvent of DEF/H2O/HNO3. The compatibility of these two divalent cations from different blocks of the periodic table results in a solid-state structure consisting of an unusual combination of a discrete V-shaped heptanuclear cluster of [Cd2Ca]2Ca′ and an infinite one-dimensional (1D) chain of [Cd2CaCa′]n that are orthogonally linked via a corner-shared Ca2+ ion (denoted as Ca′), giving rise to an unprecedented branched-chain secondary building unit (SBU). These SBUs propagate via tridentate BTB to yield a three-dimensional (3D) structure featuring a corner-truncated P41 helix in MOF 1. This outcome highlights the unique topologies possible via the combination of carefully chosen s- and d-block metal ions with polydentate ligands.
Collapse
|
7
|
Liu Y, Lin SX, Niu RJ, Liu Q, Zhang WH, Young DJ. Zinc and Cadmium Complexes of Pyridinemethanol Carboxylates: Metal Carboxylate Zwitterions and Metal-Organic Frameworks. Chempluschem 2020; 85:832-837. [PMID: 32364322 DOI: 10.1002/cplu.202000175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Indexed: 11/08/2022]
Abstract
The heterofunctional lactone furo[3,4-b]pyridin-5(7H)-one (L1 ) undergoes a coordination-induced ring-opening reaction with Zn(NO3 )2 ⋅ 6H2 O to yield the zwitterionic [Zn(L1 ')2 (H2 O)2 ] (1, L1 '=2-(hydroxymethyl)nicotinate) with an uncoordinated carboxylate. The same reaction with Cd(NO3 )2 ⋅ 4H2 O provides a two-dimensional (2D) network of [Cd(L1 ')2 ]n (3) with the carboxylates coordinated to cadmium(II) propagating the assembly. The corresponding reactions of Zn(NO3 )2 ⋅ 6H2 O and Cd(NO3 )2 ⋅ 4H2 O with 2-(hydroxymethyl)isonicotinic acid (HL2 ) generated zwitterionic [Zn(L2 )2 (H2 O)2 ] (2) and a 2D network [Cd(L2 )2 ]n ⋅nDMF (4, DMF=N,N'-dimethylformamide), respectively. Complexes 1-4 are weakly emissive, giving ligand-centered emissions at 409 nm (1), 412/436 nm (2), 404 nm (3), and 412/436 nm (4) in CHCl3 solutions upon excitation at 330 nm. This work points to the potential of using 'hidden' functionalities widely found in small organic molecules and natural products for the construction of coordination complexes with new functionality and potential applications.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Shi-Xin Lin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Ru-Jie Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Quan Liu
- College of Chemistry and Chemical Engineering, Nantong University Nantong 226019 (P. R. China)
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - David J Young
- College of Engineering, Information Technology & Environment, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
| |
Collapse
|
8
|
Chao M, Chen J, Wu X, Wang R, Wang P, Ding L, Young DJ, Zhang W. Unconventional Pyridyl Ligand Inclusion within a Flexible Metal‐Organic Framework Bearing an
N
,
N
′‐Diethylformamide (DEF)‐Solvated Cd
5
Cluster Secondary Building Unit. Chempluschem 2020; 85:503-509. [DOI: 10.1002/cplu.202000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 02/28/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Meng‐Yao Chao
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Jing Chen
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiao‐Yu Wu
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Rui‐Yao Wang
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Pei‐Pei Wang
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - Lifeng Ding
- Department of ChemistryXi'an Jiaotong-Liverpool University Suzhou 215123 China
| | - David J. Young
- College of Engineering Information Technology & EnvironmentCharles Darwin University Darwin, Northern Territory 0909 Australia
| | - Wen‐Hua Zhang
- College of Chemistry Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| |
Collapse
|
9
|
Niu RJ, Zhou WF, Liu Y, Yang JY, Zhang WH, Lang JP, Young DJ. Morphology-dependent third-order optical nonlinearity of a 2D Co-based metal-organic framework with a porphyrinic skeleton. Chem Commun (Camb) 2019; 55:4873-4876. [PMID: 30951050 DOI: 10.1039/c9cc01363f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A two-dimensional (2D) Co-based metal-organic framework (MOF) with porphyrinic skeleton forms crystalline plates, flower-shaped clusters, and ultrathin films under optimized conditions, including the use of polyvinylpyrrolidone (PVP) as a surfactant. Ultrathin films demonstrate the best solution-based third-order nonlinear optical properties, featuring a nonlinear transmittance (T) value of 0.54, absorption coefficient (α2) of 9.5 × 10-10 m W-1 and second hyperpolarizability (γ) value of 1.37 × 10-28 esu, which are slightly better than those of the flower-shaped clusters (T = 0.65, α2 = 7.0 × 10-10 m W-1; γ = 1.27 × 10-28 esu), but marginally better than those of the crystalline thin plates (T = 0.94, α2 = 2.4 × 10-10 m W-1; γ = 0.24 × 10-28 esu).
Collapse
Affiliation(s)
- Ru-Jie Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Armaghan M, Niu RJ, Liu Y, Zhang WH, Hor TA, Lang JP. Zn-based metal–organic frameworks (MOFs) of pyridinemethanol–carboxylate conjugated ligands: Deprotonation-dependent structures and CO2 adsorption. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chao MY, Zhang WH, Lang JP. Co₂ and Co₃ Mixed Cluster Secondary Building Unit Approach toward a Three-Dimensional Metal-Organic Framework with Permanent Porosity. Molecules 2018; 23:E755. [PMID: 29587386 PMCID: PMC6017799 DOI: 10.3390/molecules23040755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Large and permanent porosity is the primary concern when designing metal-organic frameworks (MOFs) for specific applications, such as catalysis and drug delivery. In this article, we report a MOF Co11(BTB)₆(NO₃)₄(DEF)₂(H₂O)14 (1, H₃BTB = 1,3,5-tris(4-carboxyphenyl)benzene; DEF = N,N-diethylformamide) via a mixed cluster secondary building unit (SBU) approach. MOF 1 is sustained by a rare combination of a linear trinuclear Co₃ and two types of dinuclear Co₂ SBUs in a 1:2:2 ratio. These SBUs are bridged by BTB ligands to yield a three-dimensional (3D) non-interpenetrated MOF as a result of the less effective packing due to the geometrically contrasting SBUs. The guest-free framework of 1 has an estimated density of 0.469 g cm-3 and exhibits a potential solvent accessible void of 69.6% of the total cell volume. The activated sample of 1 exhibits an estimated Brunauer-Emmett-Teller (BET) surface area of 155 m² g-1 and is capable of CO₂ uptake of 58.61 cm³ g-1 (2.63 mmol g-1, 11.6 wt % at standard temperature and pressure) in a reversible manner at 195 K, showcasing its permanent porosity.
Collapse
Affiliation(s)
- Meng-Yao Chao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Chao MY, Chen J, Young DJ, Zhang WH, Lang JP. Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework via the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Trans 2018; 47:13722-13729. [DOI: 10.1039/c8dt02813c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Doping of Co2+ in the linear Cd3 cluster secondary building units lowers the single-crystal to single-crystal conversion reactivity of the resulting metal–organic framework.
Collapse
Affiliation(s)
- Meng-Yao Chao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jing Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - David J. Young
- Faculty of Science
- Health
- Education and Engineering
- University of the Sunshine Coast
- Maroochydore
| | - Wen-Hua Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
13
|
Yuan FL, Yuan YQ, Chao MY, Young DJ, Zhang WH, Lang JP. Deciphering the Structural Relationships of Five Cd-Based Metal-Organic Frameworks. Inorg Chem 2017; 56:6522-6531. [PMID: 28493678 DOI: 10.1021/acs.inorgchem.7b00592] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The one-pot reaction of Cd(NO3)2·4H2O and 5-(6-(hydroxymethyl)pyridin-3-yl)isophthalic acid (H2L) in DMF/H2O (DMF = N,N-dimethylformamide) produced a two-dimensional (2D) metal-organic framework (MOF) of [Cd(L)(H2O)2] (A) bearing aqua-bridged Cd centers, accompanied by two three-dimensional (3D) MOFs [Cd(L)(DMF)0.5] (B) and [Cd(L)] (C). Removing the bridging aqua molecules of A by heating led to the formation of an additional 3D MOF of [Cd(L)] (D) in a single-crystal to single-crystal (SCSC) manner. The search for the preceding compound that could convert to A resulted in the isolation of a 2D MOF [Cd(L)(DMF)] (E) that readily converted to A in water, but with the loss of single crystallinity. Upon excitation at 350 nm, A, D, E, and the ligand H2L fluoresced at 460 nm, 468 nm, 475 nm, and 411 nm, respectively. The fluorescence of A could be used for the selective detection of Fe3+ in water down to 0.58 ppm. This quenching was not affected by the presence of other common metal ions.
Collapse
Affiliation(s)
- Feng-Ling Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Yan-Qiu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Meng-Yao Chao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - David J Young
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast , Maroochydore, Queensland 4558, Australia
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032, People's Republic of China
| |
Collapse
|