1
|
Desai NC, Jadeja DJ, Jethawa AM, Ahmad I, Patel H, Dave BP. Design and synthesis of some novel hybrid molecules based on 4-thiazolidinone bearing pyridine-pyrazole scaffolds: molecular docking and molecular dynamics simulations of its major constituent onto DNA gyrase inhibition. Mol Divers 2024; 28:693-709. [PMID: 36750538 DOI: 10.1007/s11030-023-10612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Due to multidrug resistance, microbial infections have become significant on a global level. As infections caused by several resistant bacteria and fungi severely harm mankind, scientists have developed new antibiotics to combat these infections. In order to develop novel antimicrobial agents, a series of 4-thiazolidinone-based 5-arylidene hybrids (5a-o) have been designed and synthesized to evaluate their antibacterial and antifungal activities. For the determination of the structure of a novel synthesized hybrid, various spectral techniques, e.g., IR, 1H NMR, 13C NMR, and Mass spectroscopy, were used. Two bacterial gram-negative (Escherichia coli and Pseudomonas aeruginosa), two gram-positive strains (Staphylococcus aureus and Streptococcus pyogenes), and one fungal strain (Candida albicans) were used to evaluate antimicrobial activity. Compounds 5c, 5g, and 5i were effective due to their MIC values of 62.5 μg/mL against tested bacterial strains (S. pyogenes (5c), P. aeruginosa (5g), and E. coli (5i), respectively.) and 250 μg/mL against C. albicans fungal strains, respectively. Additionally, molecular docking and 100 ns molecular dynamic simulations were carried out to investigate the stability of molecular contacts and to establish how the newly synthesized inhibitors fit together in the most stable conformations.
Collapse
Affiliation(s)
- Nisheeth C Desai
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India.
| | - Dharmpalsinh J Jadeja
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Aratiba M Jethawa
- Division of Medicinal Chemistry, Department of Chemistry, Maharaja Krishnakumarsinhji Bhavnagar University, Mahatma Gandhi Campus, Bhavnagar, 364 002, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - B P Dave
- School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382740, India
| |
Collapse
|
2
|
Mendapara JV, Vaghasiya MD, Rajani DP, Ahmad I, Patel H, Kumari P. Benzimidazole and piperidine containing novel 1,2,3-triazole hybrids as anti-infective agents: Design, synthesis, in silico and in vitro antimicrobial efficacy. J Biochem Mol Toxicol 2024; 38:e23526. [PMID: 37668402 DOI: 10.1002/jbt.23526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Cu alkyne-azide cycloaddition was used to easily synthesize a library of novel heterocycles containing benzimidazole and piperidine based 1,2,3-triazole(7a-7l) derivatives. The synthesized analogs were characterized by various spectroscopic techniques like FTIR, 1 H nuclear magnetic resonance (NMR), 13 C NMR, and mass spectrometry. All these novel bioactive compounds (7a-7l) were evaluated for in vitro antibacterial and antifungal efficacy. Compound 7k exhibited appreciable potent activity against Escherichia coli strain. Compounds 7a, 7b, 7f, and 7i showed excellent potent activity against all bacterial strains. Compound 7b, 7c, 7d, and 7g derivatives showed excellent effects when tested in vitro for antifungal activity against various fungal strains. Additionally, a molecular docking investigation revealed that compound 7k has the ability to bind to the active site of the E. coli DNA gyrase subunit protein and form hydrogen bonds with significant amino acid residues Asp73 and Asp49 in the active sites. In a 100 ns molecular dynamics simulation, the E. coli DNA gyrase protein's steady capacity to bind compound 7k was shown by the low measured root mean square deviation, which was an indication of the complex's conformational stability.
Collapse
Affiliation(s)
- Jigarkumar V Mendapara
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Mahesh D Vaghasiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
3
|
Li Q. Application of Fragment-Based Drug Discovery to Versatile Targets. Front Mol Biosci 2020; 7:180. [PMID: 32850968 PMCID: PMC7419598 DOI: 10.3389/fmolb.2020.00180] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
Fragment-based drug discovery (FBDD) is a powerful method to develop potent small-molecule compounds starting from fragments binding weakly to targets. As FBDD exhibits several advantages over high-throughput screening campaigns, it becomes an attractive strategy in target-based drug discovery. Many potent compounds/inhibitors of diverse targets have been developed using this approach. Methods used in fragment screening and understanding fragment-binding modes are critical in FBDD. This review elucidates fragment libraries, methods utilized in fragment identification/confirmation, strategies applied in growing the identified fragments into drug-like lead compounds, and applications of FBDD to different targets. As FBDD can be readily carried out through different biophysical and computer-based methods, it will play more important roles in drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute, Guangzhou Sugarcane Industry Research Institute, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
5
|
Kwiatkowski J, Liu B, Pang S, Ahmad NHB, Wang G, Poulsen A, Yang H, Poh YR, Tee DHY, Ong E, Retna P, Dinie N, Kwek P, Wee JLK, Manoharan V, Low CB, Seah PG, Pendharkar V, Sangthongpitag K, Joy J, Baburajendran N, Jansson AE, Nacro K, Hill J, Keller TH, Hung AW. Stepwise Evolution of Fragment Hits against MAPK Interacting Kinases 1 and 2. J Med Chem 2020; 63:621-637. [DOI: 10.1021/acs.jmedchem.9b01582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacek Kwiatkowski
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Boping Liu
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Shermaine Pang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Gang Wang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Anders Poulsen
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Haiyan Yang
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Yong Rui Poh
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Doris Hui Ying Tee
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Esther Ong
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Priya Retna
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nurul Dinie
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Perlyn Kwek
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - John Liang Kuan Wee
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Vithya Manoharan
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Choon Bing Low
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Peck Gee Seah
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Vishal Pendharkar
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Kanda Sangthongpitag
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Joma Joy
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Anna Elisabet Jansson
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Jeffrey Hill
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Thomas H. Keller
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| | - Alvin W. Hung
- Experimental Drug Development Centre, Agency for Science, Technology and Research (A*STAR), 10 Biopolis Way, Chromos #05-01/06, 138670 Singapore
| |
Collapse
|
6
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
7
|
Ushakov PY, Tabolin AA, Ioffe SL, Sukhorukov AY. In Situ Generated Magnesium Cyanide as an Efficient Reagent for Nucleophilic Cyanation of Nitrosoalkenes and Parent Nitronates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pavel Yu. Ushakov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Department of Chemistry; M. V. Lomonosov Moscow State University; 119991 Moscow Russian Federation
| | - Andrey A. Tabolin
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Sema L. Ioffe
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
| | - Alexey Yu. Sukhorukov
- Laboratory of Functional Organic Compounds; N. D. Zelinsky Institute of Organic Chemistry; Leninsky prospect, 47 119991 Moscow Russia
- Plekhanov Russian University of Economics; Stremyanny per. 36 117997 Moscow Russia
| |
Collapse
|
8
|
Badshah SL, Ullah A. New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur J Med Chem 2018; 152:393-400. [DOI: 10.1016/j.ejmech.2018.04.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 01/06/2023]
|
9
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
10
|
Johnson CN, Erlanson DA, Murray CW, Rees DC. Fragment-to-Lead Medicinal Chemistry Publications in 2015. J Med Chem 2016; 60:89-99. [PMID: 27739691 DOI: 10.1021/acs.jmedchem.6b01123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fragment-based drug discovery (FBDD) is now well-established as a technology for generating new chemical leads and drugs. This Miniperspective provides a tabulated overview of the fragment-to-lead literature published in the year 2015, together with a commentary on trends observed across the FBDD field during this time. It is hoped that this tabulated summary will provide a useful point of reference for both FBDD practitioners and the wider medicinal chemistry community.
Collapse
Affiliation(s)
- Christopher N Johnson
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Daniel A Erlanson
- Carmot Therapeutics Inc. , 409 Illinois Street, San Francisco, California 94158, United States
| | - Christopher W Murray
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - David C Rees
- Astex Pharmaceuticals , 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
11
|
Li Y, Wong YL, Ng FM, Liu B, Wong YX, Poh ZY, Liu S, Then SW, Lee MY, Ng HQ, Huang Q, Hung AW, Cherian J, Hill J, Keller TH, Kang C. Escherichia coli Topoisomerase IV E Subunit and an Inhibitor Binding Mode Revealed by NMR Spectroscopy. J Biol Chem 2016; 291:17743-53. [PMID: 27365392 PMCID: PMC5016168 DOI: 10.1074/jbc.m116.737429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/29/2016] [Indexed: 11/06/2022] Open
Abstract
Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of β1-α2 and residues in the loop of β3-β4 might improve the inhibitor potency.
Collapse
Affiliation(s)
- Yan Li
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Ying Lei Wong
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Fui Mee Ng
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Boping Liu
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Yun Xuan Wong
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Zhi Ying Poh
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Shuang Liu
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Siew Wen Then
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Michelle Yueqi Lee
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Hui Qi Ng
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Qiwei Huang
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Alvin W Hung
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Joseph Cherian
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Jeffrey Hill
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - Thomas H Keller
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| | - CongBao Kang
- From the Experimental Therapeutics Centre, Agency for Science, Technology, and Research (A*STAR), 31 Biopolis Way, Nanos, 03-01, Singapore 138669
| |
Collapse
|
12
|
Li Y, Wong YL, Lee MY, Ng HQ, Kang C. Backbone assignment of the N-terminal 24-kDa fragment of Escherichia coli topoisomerase IV ParE subunit. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:135-138. [PMID: 26482923 DOI: 10.1007/s12104-015-9652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Bacterial DNA topoisomerases are important drug targets due to their importance in DNA replication and low homology to human topoisomerases. The N-terminal 24 kDa region of E. coli topoisomerase IV E subunit (eParE) contains the ATP binding pocket. Structure-based drug discovery has been proven to be an efficient way to develop potent ATP competitive inhibitors against ParEs. NMR spectroscopy is a powerful tool to understand protein and inhibitor interactions in solution. In this study, we report the backbone assignment for the N-terminal domain of E. coli ParE. The secondary structural information and the assignment will aid in structure-based antibacterial agents development targeting eParE.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Ying Lei Wong
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Michelle Yueqi Lee
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore
| | - CongBao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research, 31 Biopolis Way Nanos, #03-01, Singapore, 138669, Singapore.
| |
Collapse
|