1
|
Zhong B, Chen F, Ge Y, Liu D. Developing a fast and catalyst-free protocol to form C=N double bond with high functional group tolerance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231263. [PMID: 37800155 PMCID: PMC10548102 DOI: 10.1098/rsos.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The carbon-nitrogen double bond (C=N) is a fundamentally important functional group in organic chemistry. This is largely due to the fact that C=N acts as electrophilic synthon to give nitrogen-containing compounds. Here, we report the condensation of primary amine or hydrazine with very electron-deficient aldehyde to form C=N bond in the absence of any catalysts (metals and acids). The protocol performs at room temperature and applies water as co-solvent. Two hundred examples are presented here. With its intrinsic advantages of wide substrate scopes, excellent efficiency (high yields and short reaction time), operational simplicity, mild condition (room temperature as reaction temperature, no catalysts, no additions, water as co-solvent and opening to air) and available starting materials, the protocol can be compatible with various drugs, prodrugs, dyes and pharmacophores containing primary amino group. In addition, we also successfully apply this protocol to rapidly synthesize the core scaffolds of bioactive molecules.
Collapse
Affiliation(s)
- Bin Zhong
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Feng Chen
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yushu Ge
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dan Liu
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
2
|
Adelusi TI, Abdul-Hammed M, Idris MO, Oyedele QK, Adedotun IO. Molecular dynamics, quantum mechanics and docking studies of some Keap1 inhibitors - An insight into the atomistic mechanisms of their antioxidant potential. Heliyon 2021; 7:e07317. [PMID: 34195424 PMCID: PMC8233138 DOI: 10.1016/j.heliyon.2021.e07317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of Keap1 would disrupt the covalent interaction between Keap1 and Nrf2 to unleash Nrf2 transcriptional machinery that orchestrates its cellular antioxidant, cytoprotective and detoxification processes thereby, protecting the cells against oxidative stress mediated diseases. In this in silico research, we investigated the Keap1 inhibiting potential of fifty (50) antioxidants using pharmacokinetic ADMET profiling, bioactivity assessment, physicochemical studies, molecular docking investigation, molecular dynamics and Quantum mechanical-based Density Functional Theory (DFT) studies using Keap1 as the apoprotein control. Out of these 50 antioxidants, Maslinic acid (MASA), 18-alpha-glycyrrhetinic acid (18-AGA) and resveratrol stand out by passing the RO5 (Lipinski rule of 5) for the physicochemical properties and ADMET studies. These three compounds also show high binding affinity of -10.6 kJ/mol, -10.4 kJ/mol and -7.8 kJ/mol at the kelch pocket of Keap1 respectively. Analysis of the 20ns trajectories using RMSD, RMSF, ROG and h-bond parameters revealed the stability of these compounds after comparing them with Keap1 apoprotein. Furthermore, the electron donating and accepting potentials of these compounds was used to investigate their reactivity using Density Functional Theory (HOMO and LUMO) and it was revealed that resveratrol had the highest stability based on its low energy gap. Our results predict that the three compounds are potential drug candidates with domiciled therapeutic functions against oxidative stress-mediated diseases. However, resveratrol stands out as the compound with the best stability and therefore, could be the best candidate with the best therapeutic efficacy.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Misbaudeen Abdul-Hammed
- Biophysical and Computational Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Qudus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Ibrahim Olaide Adedotun
- Biophysical and Computational Chemistry Unit, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
3
|
Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharmacol Res 2021; 167:105577. [PMID: 33774182 DOI: 10.1016/j.phrs.2021.105577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Collapse
|
4
|
Azoulay-Ginsburg S, Di Salvio M, Weitman M, Afri M, Ribeiro S, Ebbinghaus S, Cestra G, Gruzman A. Chemical chaperones targeted to the endoplasmic reticulum (ER) and lysosome prevented neurodegeneration in a C9orf72 repeat expansion drosophila amyotrophic lateral sclerosis (ALS) model. Pharmacol Rep 2021; 73:536-550. [PMID: 33661518 DOI: 10.1007/s43440-021-00226-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND ALS is an incurable neuromuscular degenerative disorder. A familiar form of the disease (fALS) is related to point mutations. The most common one is an expansion of a noncoding GGGGCC hexanucleotide repeat of the C9orf72 gene on chromosome 9p21. An abnormal translation of the C9orf72 gene generates dipeptide repeat proteins that aggregate in the brain. One of the classical approaches for developing treatment against protein aggregation-related diseases is to use chemical chaperones (CSs). In this work, we describe the development of novel 4-phenylbutyric acid (4-PBA) lysosome/ER-targeted derivatives. We assumed that 4-PBA targeting to specific organelles, where protein degradation takes place, might reduce the 4-PBA effective concentration. METHODS Organic chemistry synthetic methods and solid-phase peptide synthesis (SPPS) were used for preparing the 4-PBA derivatives. The obtained compounds were evaluated in an ALS Drosophila model that expressed C9orf72 repeat expansion, causing eye degeneration. Targeting to lysosome was validated by the 19F-nuclear magnetic resonance (NMR) technique. RESULTS Several synthesized compounds exhibited a significant biological effect by ameliorating the eye degeneration. They blocked the neurodegeneration of fly retina at different efficacy levels. The most active CS was compound 9, which is a peptide derivative and was targeted to ER. Another active compound targeted to lysosome was compound 4. CONCLUSIONS Novel CSs were more effective than 4-PBA; therefore, they might be used as a new class of drug candidates to treat ALS and other protein misfolding disorders.
Collapse
Affiliation(s)
| | - Michela Di Salvio
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Michal Afri
- Bar-Ilan University, 5290002, Ramat-Gan, Israel
| | - Sara Ribeiro
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, 38106, Braunschweig, Germany
| | - Gianluca Cestra
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology, National Research Council, Sapienza University of Rome, 00185, Rome, Italy.
| | - Arie Gruzman
- Bar-Ilan University, 5290002, Ramat-Gan, Israel.
| |
Collapse
|
5
|
Azoulay‐Ginsburg S, Trobiani L, Setini A, Favaloro FL, Giorda E, Jacob A, Hauschner H, Levy L, Cestra G, De Jaco A, Gruzman A. A Lipophilic 4‐Phenylbutyric Acid Derivative That Prevents Aggregation and Retention of Misfolded Proteins. Chemistry 2020; 26:1834-1845. [DOI: 10.1002/chem.201904292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Laura Trobiani
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Andrea Setini
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Flores Lietta Favaloro
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Ezio Giorda
- Ospedale Pediatrico Bambin Gesù-Rome Piazza di Sant'Onofrio 4 Rome 00165 Italy
| | - Avi Jacob
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Hagit Hauschner
- Faculty of Life SciencesBar-Ilan University Ramat-Gan 5290002 Israel
| | - Laura Levy
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| | - Gianluca Cestra
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
- Institute of Molecular Biology and Pathology—National Research CouncilSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology “Charles Darwin”, andPasteur Institute—Cenci Bolognetti FoundationSapienza University of Rome Piazzale Aldo Moro 5 Rome 00185 Italy
| | - Arie Gruzman
- Department of ChemistryBar-Ilan University Ramat-Gan 5290002 Israel
| |
Collapse
|
6
|
Kahremany S, Babaev I, Gvirtz R, Ogen-Stern N, Azoulay-Ginsburg S, Senderowitz H, Cohen G, Gruzman A. Nrf2 Activation by SK-119 Attenuates Oxidative Stress, UVB, and LPS-Induced Damage. Skin Pharmacol Physiol 2019; 32:173-181. [PMID: 31079103 DOI: 10.1159/000499432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS The Nrf2 signaling pathway plays a pivotal role in neutralizing excess reactive oxygen species formation and therefore enhancing the endogenous cellular protection mechanism. Thus, activating this pathway may provide therapeutic options against oxidative stress-related disorders. We have recently applied a computer-aided drug design approach to the design and synthesis of novel Nrf2 enhancers. The current study was aimed at investigating the potential beneficial impact of (E)-5-oxo-1-(4-((2,4,6-trihydroxybenzylidene)amino)phenyl)pyrrolidine-3-carboxylic acid (SK-119) in skin oxidative damage models. METHODS SK-119, tested initially in PC-12 cells, attenuated oxidative stress-induced cytotoxicity concomitantly with Nrf2 activation. The potential impact of this compound was evaluated in skin-based disease models both in vitro (HaCaT cells) and ex vivo (human skin organ culture). RESULTS The data clearly showed the marked anti-inflammatory and photoprotection properties of the compound; SK-119-treated cells or tissues displayed a reduction in cytokine secretion induced by lipopolysaccharides (LPS) in a manner comparable with dexamethasone. In addition, topical application of SK-119 was able to block UVB-induced oxidative stress and attenuated caspase-mediated apoptosis, DNA adduct formation, and the concomitant cellular damage. CONCLUSION These results indicate that SK-119 is an Nrf2 activator that can be used as a prototype molecule for the development of novel treatments of dermatological disorders related to oxidative stress.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ilana Babaev
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raanan Gvirtz
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | - Navit Ogen-Stern
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | | | - Hanoch Senderowitz
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Cohen
- The Skin Research Institute, The Dead-Sea and Arava Science Center, Masada, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat Gan, Israel,
| |
Collapse
|
7
|
Munder A, Moskovitz Y, Meir A, Kahremany S, Levy L, Kolitz-Domb M, Cohen G, Shtriker E, Viskind O, Lellouche JP, Senderowitz H, Chessler SD, Korshin EE, Ruthstein S, Gruzman A. Neuroligin-2-derived peptide-covered polyamidoamine-based (PAMAM) dendrimers enhance pancreatic β-cells' proliferation and functions. MEDCHEMCOMM 2019; 10:280-293. [PMID: 30881615 PMCID: PMC6390468 DOI: 10.1039/c8md00419f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Abstract
Pancreatic β-cell membranes and presynaptic areas of neurons contain analogous protein complexes that control the secretion of bioactive molecules. These complexes include the neuroligins (NLs) and their binding partners, the neurexins (NXs). It has been recently reported that both insulin secretion and the proliferation rates of β-cells increase when cells are co-cultured with full-length NL-2 clusters. The pharmacological use of full-length protein is always problematic due to its unfavorable pharmacokinetic properties. Thus, NL-2-derived short peptide was conjugated to the surface of polyamidoamine-based (PAMAM) dendrimers. This nanoscale composite improved β-cell functions in terms of the rate of proliferation, glucose-stimulated insulin secretion (GSIS), and functional maturation. This functionalized dendrimer also protected β-cells under cellular stress conditions. In addition, various novel peptidomimetic scaffolds of NL-2-derived peptide were designed, synthesized, and conjugated to the surface of PAMAM in order to increase the biostability of the conjugates. However, after being covered by peptidomimetics, PAMAM dendrimers were inactive. Thus, the original peptide-based PAMAM dendrimer is a leading compound for continued research that might provide a unique starting point for designing an innovative class of antidiabetic therapeutics that possess a unique mode of action.
Collapse
Affiliation(s)
- Anna Munder
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Yoni Moskovitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Aviv Meir
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Shirin Kahremany
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Department of Pharmacology , Cleveland Center for Membrane and Structural Biology , School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Laura Levy
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Michal Kolitz-Domb
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Guy Cohen
- Skin Research Institute , Dead Sea and Arava Research Center , Masada , Israel
| | - Efrat Shtriker
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Olga Viskind
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Jean-Paul Lellouche
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
- Nanomaterials Research Center , Institute of Nanotechnology & Advanced Materials (BINA) , Bar-Ilan University , Ramat-Gan , Israel
| | - Hanoch Senderowitz
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Steven D Chessler
- Division of Endocrinology, Diabetes & Metabolism , Department of Medicine , University of California , Irvine , CA , USA
| | - Edward E Korshin
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Sharon Ruthstein
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| | - Arie Gruzman
- Department of Chemistry , Faculty of Exact Sciences , Bar-Ilan University , Ramat-Gan , Israel . ;
| |
Collapse
|