1
|
Xu J, Wang T, Deng S, Lai W, Shi Y, Zhao Y, Huang F, Wei P. Visible Light-Responsive Crystalline B←N Host Adducts with Solvent-Induced Allosteric Effect for Guest Release. Angew Chem Int Ed Engl 2024; 63:e202411880. [PMID: 39122652 DOI: 10.1002/anie.202411880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Photo-responsive organic crystals, capable of converting light energy into chemical energy to initiate conformational transitions, present an emerging strategy for developing lightweight and versatile smart materials. However, visible light-triggered tailored guests capture and release behaviors in all-organic solids are rarely reported. Here, we introduce a photoreactive crystalline boron-nitrogen (B←N) host adduct with the ability to undergo [2+2] photocycloaddition upon 447 nm light exposure. This process facilitates single-crystal-to-single-crystal (SCSC) photodimerization in the mother liquor, maintaining the original B←N host structure. Weakened intermolecular interactions within the photodimer host contribute to fast guest release in air under irradiation. Furthermore, the dynamic B←N bonds enable reversible transformations between organic host adducts and adduct cocrystals under the solvent-induced allosteric effect. As a result, four B←N host adduct crystals containing individual alkane guest are easily obtained and exhibited the ability of photo-controlled alkane release. Therefore, the integration of photo reactivity and structural transformation within B←N host adduct enables customized capture and release of guest molecules.
Collapse
Affiliation(s)
- Jieqiong Xu
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Tao Wang
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Shengyong Deng
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Weiming Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, 410082, Changsha, Hunan, China
| | - Yadong Shi
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Yanyu Zhao
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 311215, Hangzhou, Zhejiang, China
| | - Peifa Wei
- Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 230039, Hefei, Anhui, China
| |
Collapse
|
2
|
Liu B, Guo P, Guan X, Tian X, Du F, Xie W, Jiang HL. Crystalline Porous Organic Frameworks Based on Multiple Dynamic Linkages. Angew Chem Int Ed Engl 2024; 63:e202405027. [PMID: 38656532 DOI: 10.1002/anie.202405027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford B3O3-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs). The CPOFs display excellent solution processability, allowing dissolution and subsequent crystallization to their original structures, independent of recrystallization conditions, possibly due to the diverse bond energies of the involved interactions. Significantly, the CPOFs can be synthesized on a gram-scale using cost-effective monomers. In addition, the numerous acidic sites endow the CPOFs with high NH3 capacity, surpassing most porous organic materials and commercial materials.
Collapse
Affiliation(s)
- Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Panyue Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Xinyu Guan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, Zhejiang, 310000, P. R. China
| | - Xuexue Tian
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Fei Du
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Weiqing Xie
- College of Chemistry & Pharmacy, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Guadalupe Vasquez-Ríos M, Campillo-Alvarado G, MacGillivray LR. Mechanochemical Mediated Coexistence of B←N Coordination and Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202308350. [PMID: 37365138 DOI: 10.1002/anie.202308350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Mechanochemistry afforded a photoactive cocrystal via coexisting (B)O-H⋅⋅⋅N hydrogen bonds and B←N coordination. Specifically, solvent-free mechanochemical ball mill grinding and liquid-assisted grinding of a boronic acid and an alkene resulted in mixtures of hydrogen-bonded and coordinated complexes akin to mixtures of noncovalent complexes that can be obtained in solution in equilibria processes. The alkenes of the hydrogen-bonded assembly undergo an intermolecular [2+2] photodimerization in quantitative conversion, effectively reporting the outcome of the self-assembly processes. Our results suggest that interplay involving noncovalent bonds subjected to mechanochemical conditions can lead to functional solids where, in the current case, the structure composed of the weaker hydrogen bonding interactions predominates.
Collapse
|
4
|
Manankandayalage CP, Unruh DK, Perry R, Krempner C. 1,8-Dihydroxy Naphthalene-A New Building Block for the Self-Assembly with Boronic Acids and 4,4'-Bipyridine to Stable Host-Guest Complexes with Aromatic Hydrocarbons. Molecules 2023; 28:5394. [PMID: 37513266 PMCID: PMC10385103 DOI: 10.3390/molecules28145394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The new Lewis acid-base adducts of general formula X(nad)B←NC5H4-C5H4N→B(nad)X [nad = 1,8-O2C10H6, X = C6H5 (2c), 3,4,5-F3-C6H2 (2d)] were synthesized in high yields via reactions of 1,8-dihydroxy naphthalene [nadH2] and 4,4'-bipyridine with the aryl boronic acids C6H5B(OH)2 and 3,4,5-F3-C6H2B(OH)2, respectively, and structurally characterized by multi-nuclear NMR spectroscopy and SCXRD. Self-assembled H-shaped Lewis acid-base adduct 2d proved to be effective in forming thermally stable host-guest complexes, 2d × solvent, with aromatic hydrocarbon solvents such as benzene, toluene, mesitylene, aniline, and m-, p-, and o-xylene. Crystallographic analysis of these solvent adducts revealed host-guest interactions to primarily occur via π···π contacts between the 4,4'-bipyridyl linker and the aromatic solvents, resulting in the formation of 1:1 and 1:2 host-guest complexes. Thermogravimetric analysis of the isolated complexes 2d × solvent revealed their high thermal stability with peak temperatures associated with the loss of solvent ranging from 122 to 147 °C. 2d, when self-assembled in an equimolar mixture of m-, p-, and o-xylene (1:1:1), preferentially binds to o-xylene. Collectively, these results demonstrate the ability of 1,8-dihydroxy naphthalene to serve as an effective building block in the selective self-assembly to supramolecular aggregates through dative covalent N→B bonds.
Collapse
Affiliation(s)
- Chamila P Manankandayalage
- Department of Chemistry & Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, TX 79409-1061, USA
| | - Daniel K Unruh
- Department of Chemistry & Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, TX 79409-1061, USA
| | - Ryan Perry
- Department of Chemistry & Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, TX 79409-1061, USA
| | - Clemens Krempner
- Department of Chemistry & Biochemistry, Texas Tech University, P.O. Box 41061, Lubbock, TX 79409-1061, USA
| |
Collapse
|
5
|
Xiao X, Xiao D, Sheng G, Shan T, Wang J, Miao X, Liu Y, Li G, Zhu Y, Sessler JL, Huang F. Formation of polyrotaxane crystals driven by dative boron-nitrogen bonds. SCIENCE ADVANCES 2023; 9:eadi1169. [PMID: 37406124 DOI: 10.1126/sciadv.adi1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The integration of mechanically interlocked molecules (MIMs) into purely organic crystalline materials is expected to produce materials with properties that are not accessible using more classic approaches. To date, this integration has proved elusive. We present a dative boron-nitrogen bond-driven self-assembly strategy that allows for the preparation of polyrotaxane crystals. The polyrotaxane nature of the crystalline material was confirmed by both single-crystal x-ray diffraction analysis and cryogenic high-resolution low-dose transmission electron microscopy. Enhanced softness and greater elasticity are seen for the polyrotaxane crystals than for nonrotaxane polymer controls. This finding is rationalized in terms of the synergetic microscopic motion of the rotaxane subunits. The present work thus highlights the benefits of integrating MIMs into crystalline materials.
Collapse
Affiliation(s)
- Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, P. R. China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
6
|
Herrera-España AD, Höpfl H, Morales-Rojas H. Host‐Guest Properties of a Trigonal Iminoboronate Ester Cage Self‐Assembled from Hexahydroxytriphenylene. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Angel D. Herrera-España
- Universidad Autonoma del Estado de Quintana Roo División de Ciencias de la Salud Av. Erick Paolo Martínez S/N 77039 Chetumal MEXICO
| | - Herbert Höpfl
- Universidad Autonoma del Estado de Morelos Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas Av. Universidad 1001 62209 Cuernavaca MEXICO
| | - Hugo Morales-Rojas
- Universidad Autonoma del Estado de Morelos Centro de Investigaciones Químicas Av. Universidad 1001Chamilpa 62209 Cuernavaca MEXICO
| |
Collapse
|
7
|
Hartwick C, Yelgaonkar SP, Reinheimer EW, Campillo-Alvarado G, MacGillivray LR. Self-Assembly of Diboronic Esters with U-Shaped Bipyridines: "Plug-in-Socket" Assemblies. CRYSTAL GROWTH & DESIGN 2021; 21:4482-4487. [PMID: 34483748 PMCID: PMC8411870 DOI: 10.1021/acs.cgd.1c00382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Self-assembled complexes utilizing the ditopic dative bond acceptor 1,3-diboronic acid with catechol and complementary U-shaped donors in the form of 1,8-dipyridylnaphthalenes (1,8-bis(4-pyridyl)naphthalene (DPN), 1,8-bis(4-ethylenylpyridyl)naphthalene (DEPN), and 1,8-bis(4-ethynylpyridyl)naphthalene (DAPN)) yielded discrete two-component structures. The assemblies exhibit "plug-in-socket" geometries. DFT calculations are consistent with the donor pyridyl and acceptor catecholate being electron poor and rich, respectively. The assemblies pack via π-π interactions and support the inclusion of a solvent (i.e., DPN, DAPN). The materials may form a basis for the design of complex B-based structures (e.g., supramolecular dyads).
Collapse
Affiliation(s)
| | - Shweta P. Yelgaonkar
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Eric W. Reinheimer
- Rigaku
Oxford Diffraction, 9009 New Trails Drive, The Woodlands, Texas 77381, United States
| | | | | |
Collapse
|
8
|
Campillo-Alvarado G, Li C, Feng Z, Hutchins KM, Swenson DC, Höpfl H, Morales-Rojas H, MacGillivray LR. Single-Crystal-to-Single-Crystal [2 + 2] Photodimerization Involving B←N Coordination with Generation of a Thiophene Host. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Changan Li
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Zhiting Feng
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kristin M. Hutchins
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dale C. Swenson
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Herbert Höpfl
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | - Hugo Morales-Rojas
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, México
| | | |
Collapse
|