1
|
Paderni D, Macedi E, Sordini E, Amatori S, Rossi P, Formica M, Giorgi L, Paoli P, Fanelli M, Fusi V. Two bis-maltol-polyamines: Synthesis, characterization and studies of their palladium(II) complexes exploring their potential anticancer activity. J Inorg Biochem 2024; 262:112758. [PMID: 39393298 DOI: 10.1016/j.jinorgbio.2024.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
The interest in the antineoplastic and binding properties shown by the bis-maltol polyamine family, particularly Malten and Maltonis, prompted us to study the Pd2+ complexes of these latter from both a biological and metallo-receptor point of view. The Malten-Pd2+ complex can lodge hard species such as Sr2+ in its coordination-driven preorganized pocket, as confirmed by X-ray diffraction. UV-Vis and NMR data showed that Malten-Pd2+ forms even at acidic pH and exists in aqueous solution in a wide range of pH. The mononuclear complex is stable enough not to release Pd2+ in solution for a long period of time (at least one week), thus Malten-Pd2+, similarly to Maltonis-Pd2+, is suitable to be tested in biological analyses. Studies on the U937 cell line revealed that the effect on cell survival reduction induced by Malten is partially lost in Malten-Pd2+, while no differences where monitored between the effects of Maltonis-Pd2+ and Maltonis, suggesting that the availability of free maltol moieties, that is retained in Maltonis-Pd2+, but not in Malten-Pd2+, is crucial to guarantee the biological activity of these compounds.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| | - Enrica Sordini
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Stefano Amatori
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Mirco Fanelli
- Molecular Pathology Laboratory "PaoLa", Department of Biomolecular Sciences, University of Urbino Carlo Bo, Fano, PU, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' Le Suore 2-4, 61029 Urbino, Italy.
| |
Collapse
|
2
|
Paderni D, Macedi E, Giacomazzo GE, Formica M, Giorgi L, Valtancoli B, Rossi P, Paoli P, Conti L, Fusi V, Giorgi C. A new biphenol-dipicolylamine based ligand and its dinuclear Zn 2+ complex as fluorescent sensors for ibuprofen and ketoprofen in aqueous solution. Dalton Trans 2024; 53:9495-9509. [PMID: 38767612 DOI: 10.1039/d4dt00935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In this work, the study of the new ligand 3,3'-bis[N,N-bis(pyridine-2-ylmethyl)aminomethyl]-2,2'-dihydroxybiphenyl (L) is reported, where a central 2,2'-biphenol (BPH) fluorophore was functionalized at 3,3'-positions with two dipicolylamine (DPA) side arms as receptor units. Following the synthesis and full chemical-physical characterization, the acid-base and Zn2+-coordination abilities of L were investigated through a combination of potentiometric, UV-Vis, fluorescence, NMR, XRD and DFT measurements. The optical properties of the ligand turned out to be strongly dependent on the pH, being straightforwardly associated with the protonation state of the BPH moiety, whereas its peculiar design allowed to form stable mono and dinuclear Zn2+ complexes. In the latter species, the presence of two Zn2+ ions coordinatively unsaturated and placed at close distance to each other, prompted us to test their usefulness as metallo-receptors for two environmental pollutants of great relevance, ibuprofen and ketoprofen. Potentiometric and fluorescence investigations evidenced that these important non-steroidal anti-inflammatory drugs (NSAIDs) are effectively coordinated by the metallo-receptors and, of relevance, both the stability and the fluorescence properties of the resulting ternary adducts are markedly affected by the different chemical architectures of the two substrates. This study aims at highlighting the promising perspectives arising from the use of polyamino phenolic ligands as chemosensors for H+/Zn2+ and other additional anionic targets in their metal-complexed forms.
Collapse
Affiliation(s)
- Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Barbara Valtancoli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139 Florence, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino, via Ca' le Suore, 2-4, 61029 Urbino, Italy.
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Macedi E, Giorgi L, Formica M, Rossi P, Paderni D, Paoli P, Fusi V. A Tetranuclear Copper(II)/Calcium(II) Complex as Dual Chemosensor for Colorimetric and Fluorescent Detection of Non-Steroidal Anti-Inflammatory Drugs. Chempluschem 2023; 88:e202200364. [PMID: 36658696 DOI: 10.1002/cplu.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Indexed: 01/06/2023]
Abstract
The tetranuclear Cu2+ /Ca2+ /Ca2+ /Cu2+ complex based on Malten ligand has been investigated as a platform for anion binding. Simple organic carboxylates and non-steroidal anti-inflammatory drugs (NSAIDs) have been tested, revealing the ability of the platform to bind them. The receiving platform hosts at least two guests in solution although a third anion can be bound, as suggested by X-ray diffraction analysis. The addition of the anions is accompanied by a color change of the solution, making the system a colorimetric sensor for carboxylates (LOD values comprised between 3.6 and 20.7 ppm). A fluorescent system consisting of the 2-(3-oxido-6-oxoxanthen-9-yl)benzoate (fluorescein anion) linked to the tetranuclear platform has been also prepared and used in a chemosensing ensemble approach to signal the presence of the selected anions (Log K between 2.6 and 5.6 for the addition of two guests). The latter also works in a paper strip test, offering the chemosensor a possible practical application.
Collapse
Affiliation(s)
- Eleonora Macedi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Mauro Formica
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139, Florence, Italy
| | - Daniele Paderni
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence, via S. Marta 3, 50139, Florence, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences, University of Urbino "Carlo Bo", Via della Stazione 4, 61029, Urbino, Italy
| |
Collapse
|
4
|
Giorgi L, Ambrosi G, Paderni D, Conti L, Amatori S, Romagnoli F, Rossi P, Formica M, Macedi E, Giorgi C, Paoli P, Fanelli M, Fusi V. Bis-maltol-polyamine family: structural modifications at strategic positions. Synthesis, coordination and antineoplastic activity of two new ligands. NEW J CHEM 2021. [DOI: 10.1039/d0nj05327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substitution at the maltol C6 position affects the antineoplastic and coordination properties of Malten, acting on degradation time, binding ability and biological activity.
Collapse
Affiliation(s)
- Luca Giorgi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Gianluca Ambrosi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Daniele Paderni
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Luca Conti
- Department of Chemistry “Ugo Schiff”, University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “PaoLa” University of Urbino “Carlo Bo”
- 61032 Fano
- Italy
| | - Francesca Romagnoli
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Patrizia Rossi
- Department of Industrial Engineering, University of Florence
- 50139 Florence
- Italy
| | - Mauro Formica
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Eleonora Macedi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| | - Claudia Giorgi
- Department of Chemistry “Ugo Schiff”, University of Florence
- 50019 Sesto Fiorentino
- Italy
| | - Paola Paoli
- Department of Industrial Engineering, University of Florence
- 50139 Florence
- Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, Molecular Pathology Laboratory “PaoLa” University of Urbino “Carlo Bo”
- 61032 Fano
- Italy
| | - Vieri Fusi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino “Carlo Bo”
- I-61029 Urbino
- Italy
| |
Collapse
|