1
|
Martina K, Tagliapietra S, Calsolaro F, Paraschiv A, Sacco M, Picollo F, Sturari S, Arpà P, Mino L, Barge A, Cravotto G. Covalent Functionalisation of rGO and Nanodiamonds: Complementary Versatility and Applicability of Azomethine Ylide, Nitrile Oxide and Nitrone. Chempluschem 2024:e202400510. [PMID: 39668110 DOI: 10.1002/cplu.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The existing synthetic protocols for the direct functionalization of carbon-based nanomaterials often entail limitations due to their harsh reaction conditions, which require the use of high temperatures for extended periods. This study aims to overcome these limitations by developing mild and efficient synthetic protocols around 1,3-dipolar cycloaddition. Beginning with the well-established azomethine ylide derivatization, we progress to the utilization of nitrile oxide, and of nitrone derivatives for the functionalization of reduced graphene oxide (rGO) as well as of nanodiamonds (NDs). This comparative work employs both classical heating and microwave activation with the aim of reducing reaction times and enhancing efficacy. Results demonstrate that nitrone can react at 60 °C and that the reaction temperature may be decreased to 30 °C with nitrile oxide. Excellent progress was made in reducing the large excess of dipoles typically required for derivatization. Nitrile oxide was proved to be the most efficient in terms of derivatization degree, while nitrone was the most versatile reagent, facilitating the decoration of the carbon nanolayer with disubstituted dihydroisoxazole. To accurately assess the degree of functionalization, the reaction products underwent characterization using various spectroscopic and analytical techniques. Additionally, an indirect evaluation of the reaction outcome was conducted through Fmoc deprotection and quantification.
Collapse
Affiliation(s)
- Katia Martina
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tagliapietra
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federica Calsolaro
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Andrei Paraschiv
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirko Sacco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Sofia Sturari
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Pietro Arpà
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
2
|
Barhoumi A, Ryachi K, Belghiti ME, Chafi M, Tounsi A, Syed A, Idrissi ME, Wong LS, Zeroual A. Chromatography Scrutiny, Molecular Docking, Clarifying the Selectivities and the Mechanism of [3 + 2] Cycloloaddition Reaction between Linallol and Chlorobenzene-Nitrile-oxide. J Fluoresc 2024; 34:1913-1929. [PMID: 37668770 DOI: 10.1007/s10895-023-03411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide and linalool, have been applied using the DFT/B3LYP/6-311(d,p) method, activation, reaction energies and the reactivity indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the -OH group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as support; our outcome reveals that the -OH group creates an intramolecular hydrogen bond in the product P2, while in the product P3 will create a hydrogen bond with the silica gel which makes the two products P2 and P3 are very easy to separate by chromatography, this result is in excellent agreement with the Rf retention value. The study might provide a fundamental for developing natural anti-viral compound in promoting human health.
Collapse
Affiliation(s)
- Ali Barhoumi
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| | - Kamal Ryachi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Mohammed Elalaoui Belghiti
- Laboratory of Physical Chemistry of Materials, Ben M'Sick Faculty of Sciences, Hassan II University, Casablanca, Morocco
- Laboratory of Nernest Technology, 163 Willington Street, Sherbrooke, QC J1H5C7, Canada
| | - Mohammed Chafi
- LIPE, Higher School of Technology, Hassan II University, Casablanca, Morocco
| | - Abdessamad Tounsi
- Agro-Industrial, Environmental and Ecological Processes Team, Faculty of Science and Techniques of Beni Mellal, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed El Idrissi
- Team of Chemical Processes and Applied Materials, Faculty Polydisciplinary, Sultan Moulay Slimane University, Beni-Mellal, Morocco.
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Abdellah Zeroual
- Molecular Modelling and Spectroscopy Research Team, Faculty of Science, Chouaïb Doukkali University, P.O. Box 20, 24000, El Jadida, Morocco
| |
Collapse
|
3
|
Maľučká LU, Vilková M. Spectral Assignment in the [3 + 2] Cycloadditions of Methyl (2 E)-3-(Acridin-4-yl)-prop-2-enoate and 4-[( E)-2-Phenylethenyl]acridin with Unstable Nitrile N-Oxides. Molecules 2024; 29:2756. [PMID: 38930822 PMCID: PMC11206844 DOI: 10.3390/molecules29122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The investigation of cycloaddition reactions involving acridine-based dipolarophiles revealed distinct regioselectivity patterns influenced mainly by the electronic factor. Specifically, the reactions of methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate and 4-[(1E)-2-phenylethenyl]acridine with unstable benzonitrile N-oxides were studied. For methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate, the formation of two regioisomers favoured the 5-(acridin-4-yl)-4,5-dihydro-1,2-oxazole-4-carboxylates, with remarkable exclusivity in the case of 4-methoxybenzonitrile oxide. Conversely, 4-[(1E)-2-phenylethenyl]acridine displayed reversed regioselectivity, favouring products 4-[3-(substituted phenyl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]acridine. Subsequent hydrolysis of isolated methyl 5-(acridin-4-yl)-3-phenyl-4,5-dihydro-1,2-oxazole-4-carboxylates resulted in the production of carboxylic acids, with nearly complete conversion. During NMR measurements of carboxylic acids in CDCl3, decarboxylation was observed, indicating the formation of a new prochiral carbon centre C-4, further confirmed by a noticeable colour change. Overall, this investigation provides valuable insights into regioselectivity in cycloaddition reactions and subsequent transformations, suggesting potential applications across diverse scientific domains.
Collapse
Affiliation(s)
- Lucia Ungvarská Maľučká
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia;
- Department of Chemistry, Biochemistry and Biophysics, The University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, Moyzesova 11, 040 01 Košice, Slovakia;
| |
Collapse
|
4
|
Reddy GS, Corey EJ. Mechanism of the Reaction of Olefins with Nitrous Anhydride (O═N-O-N═O) to Form 1,2-Oxazetes. Org Lett 2023; 25:236-239. [PMID: 36583698 DOI: 10.1021/acs.orglett.2c04080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanistic pathway for the formation of 1,2-oxazetes by reaction of olefins with nitrous anhydride has been clarified. The initial reaction intermediate, a β-nitroso nitrite ester that is sensitive to light, undergoes O-NO fission to form a β-nitroso alkoxy radical, even with ambient fluorescent lighting but much faster with blue light irradiation. The oxygen of the alkoxy radical subsequently adds to the adjacent nitroso group to generate a cyclic four-membered nitrosyl radical. The 1,2-oxazete is then produced by elimination to generate the C═N bond. No 1,2-oxazete formation occurs in the dark.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Mahmoudi AE, Tachallait H, Moutaoukil Z, Arshad S, Karrouchi K, Benhida R, Bougrin K. Ultrasound‐Assisted Green Synthesis of 3,5‐Disubstituted Isoxazole Secondary Sulfonamides via One‐Pot Five‐Component Reaction using CaCl
2
/K
2
CO
3
as Pre‐Catalyst in Water. ChemistrySelect 2022. [DOI: 10.1002/slct.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ayoub El Mahmoudi
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique URAC23 Faculty of Science B.P. 1014 Geophysics Natural Patrimony and Green Chemistry (GEOPAC) Research Center Mohammed V University in Rabat Morocco
| | - Hamza Tachallait
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique URAC23 Faculty of Science B.P. 1014 Geophysics Natural Patrimony and Green Chemistry (GEOPAC) Research Center Mohammed V University in Rabat Morocco
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Benguerir Morocco
| | - Zakaria Moutaoukil
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Benguerir Morocco
- Université Côte d'Azur CNRS Institut de Chimie de Nice UMR CNRS 7272 - 06108 Nice France
| | - Suhana Arshad
- X-ray Crystallography Unit School of Physics Universiti Sains Malaysia 11800 USM Penang Malaysia
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology Faculty of Medicine and Pharmacy Mohammed V University in Rabat Morocco
| | - Rachid Benhida
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Benguerir Morocco
- Université Côte d'Azur CNRS Institut de Chimie de Nice UMR CNRS 7272 - 06108 Nice France
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique URAC23 Faculty of Science B.P. 1014 Geophysics Natural Patrimony and Green Chemistry (GEOPAC) Research Center Mohammed V University in Rabat Morocco
- Chemical & Biochemical Sciences Green-Process Engineering (CBS) Mohammed VI Polytechnic University Lot 660, Hay Moulay Rachid Benguerir Morocco
| |
Collapse
|
6
|
Mironova IA, Nenajdenko VG, Postnikov PS, Saito A, Yusubov MS, Yoshimura A. Efficient Catalytic Synthesis of Condensed Isoxazole Derivatives via Intramolecular Oxidative Cycloaddition of Aldoximes. Molecules 2022; 27:3860. [PMID: 35744982 PMCID: PMC9229713 DOI: 10.3390/molecules27123860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/28/2023] Open
Abstract
The intramolecular oxidative cycloaddition reaction of alkyne- or alkene-tethered aldoximes was catalyzed efficiently by hypervalent iodine(III) species to afford the corresponding polycyclic isoxazole derivatives in up to a 94% yield. The structure of the prepared products was confirmed by various methods, including X-ray crystallography. Mechanistic study demonstrated the crucial role of hydroxy(aryl)iodonium tosylate as a precatalyst, which is generated from 2-iodobenzoic acid and m-chloroperoxybenzoic acid in the presence of a catalytic amount of p-toluenesulfonic acid.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | | | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.A.M.); (P.S.P.)
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| |
Collapse
|
7
|
Reddy GS, Suh EJ, Corey EJ. Nitrosyl Triflate and Nitrous Anhydride, Same Mode of Generation, but Very Different Reaction Pathways. Direct Synthesis of 1,2-Oxazetes, Nitroso or Bisoxazo Compounds from Olefins. Org Lett 2022; 24:4202-4206. [PMID: 35653176 DOI: 10.1021/acs.orglett.2c01466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrosyl triflate (TfONO) can be generated in situ from tetra-n-butylammonium nitrite and triflic anhydride (1:1) in CH2Cl2 solution at ca. -30 °C. It acts as a powerful and soluble nitrosating agent with a wide range of olefinic or aromatic substrates. Nitrous anhydride (O═N-O-N═O) can be generated in the same way using tetra-n-butylammonium nitrite and triflic anhydride (2:1) in CH2Cl2 solution at ca. -30 °C. Each reagent has been isolated and characterized. They react with olefins to give different products. Nitrosyl triflate is an excellent reagent for generating either vinylic or allylic nitroso compounds or their dimeric bisoxazo derivates. Nitrous anhydride efficiently converts many olefins to 1,2-oxazetes in a single step, making this class of compounds readily available from olefins for the first time. We have also discovered another route to 1,2-oxazetes involving a novel rearrangement/isomerization of allylic nitroso compounds which is catalyzed by Pd-C/H2.
Collapse
Affiliation(s)
- G Sudhakar Reddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elijah J Suh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - E J Corey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Le Pors MS, Barri IA, Riafrecha LE, Echeverría GA, Piro OE, Colinas PA. Green Biphasic Synthesis, X‐Ray Diffraction Structure and Conformational Analysis of
O
‐Glycosylmethyl Isoxazoles: Potential Substrates of GLUT‐1 Glucose Transporter. ChemistrySelect 2022. [DOI: 10.1002/slct.202104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Macarena S. Le Pors
- CEDECOR (UNLP-CICBA) CONICET Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115, 1900 La Plata Argentina
| | - Ivan A. Barri
- CEDECOR (UNLP-CICBA) CONICET Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115, 1900 La Plata Argentina
| | - Leonardo E. Riafrecha
- CEDECOR (UNLP-CICBA) CONICET Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115, 1900 La Plata Argentina
| | - Gustavo A. Echeverría
- Departamento de Física Facultad de Ciencias Exactas Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT−La Plata) C. C. 67 1900 La Plata Argentina
| | - Oscar E. Piro
- Departamento de Física Facultad de Ciencias Exactas Universidad Nacional de La Plata and Institute IFLP (CONICET, CCT−La Plata) C. C. 67 1900 La Plata Argentina
| | - Pedro A. Colinas
- CEDECOR (UNLP-CICBA) CONICET Departamento de Química Facultad de Ciencias Exactas Universidad Nacional de La Plata, 47 y 115, 1900 La Plata Argentina
| |
Collapse
|
9
|
Bruzgulienė J, Račkauskienė G, Bieliauskas A, Milišiūnaitė V, Dagilienė M, Matulevičiūtė G, Martynaitis V, Krikštolaitytė S, Sløk FA, Šačkus A. Regioselective synthesis of methyl 5-( N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates as new amino acid-like building blocks. Beilstein J Org Chem 2022; 18:102-109. [PMID: 35096179 PMCID: PMC8767561 DOI: 10.3762/bjoc.18.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
A convenient and efficient synthesis of novel achiral and chiral heterocyclic amino acid-like building blocks was developed. Regioisomeric methyl 5-(N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates were prepared by the reaction of β-enamino ketoesters (including azetidine, pyrrolidine or piperidine enamines) with hydroxylamine hydrochloride. Unambiguous structural assignments were based on chiral HPLC analysis, 1H, 13C, and 15N NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Collapse
Affiliation(s)
- Jolita Bruzgulienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Miglė Dagilienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Gita Matulevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Frank A Sløk
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
10
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Kobychev VB, Pradedova AG, Trofimov BA. A one-pot assembly of Δ2-isoxazolines from ketones, aryl acetylenes and hydroxylamine: Revisiting the mechanism in terms of quantum chemistry. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhao Z, Ou Z, Kalita SJ, Cheng F, Huang Q, Gu Y, Wang Y, Zhao Y, Huang Y. Stereoconvergent and stepwise 1,3-dipolar cycloadditions of nitrile oxides and nitrile imines. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Convenient Synthesis of Pyrazolo[4',3':5,6]pyrano[4,3- c][1,2]oxazoles via Intramolecular Nitrile Oxide Cycloaddition. Molecules 2021; 26:molecules26185604. [PMID: 34577075 PMCID: PMC8469150 DOI: 10.3390/molecules26185604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
A simple and efficient synthetic route to the novel 3a,4-dihydro-3H,7H- and 4H,7H-pyrazolo[4′,3′:5,6]pyrano[4,3-c][1,2]oxazole ring systems from 3-(prop-2-en-1-yloxy)- or 3-(prop-2-yn-1-yloxy)-1H-pyrazole-4-carbaldehyde oximes has been developed by employing the intramolecular nitrile oxide cycloaddition (INOC) reaction as the key step. The configuration of intermediate aldoximes was unambiguously determined using NOESY experimental data and comparison of the magnitudes of 1JCH coupling constants of the iminyl moiety, which were greater by approximately 13 Hz for the predominant syn isomer. The structures of the obtained heterocyclic products were confirmed by detailed 1H, 13C and 15N NMR spectroscopic experiments and HRMS measurements.
Collapse
|
14
|
Neri G, Fazio E, Nostro A, Mineo PG, Scala A, Rescifina A, Piperno A. Shedding Light on the Chemistry and the Properties of Münchnone Functionalized Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1629. [PMID: 34206184 PMCID: PMC8307402 DOI: 10.3390/nano11071629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 12/23/2022]
Abstract
Münchnones are mesoionic oxazolium 5-oxides with azomethine ylide characteristics that provide pyrrole derivatives by a 1,3-dipolar cycloaddition (1,3-DC) reaction with acetylenic dipolarophiles. Their reactivity was widely exploited for the synthesis of small molecules, but it was not yet investigated for the functionalization of graphene-based materials. Herein, we report our results on the preparation of münchnone functionalized graphene via cycloaddition reactions, followed by the spontaneous loss of carbon dioxide and its further chemical modification to silver/nisin nanocomposites to confer biological properties. A direct functionalization of graphite flakes into few-layers graphene decorated with pyrrole rings on the layer edge was achieved. The success of functionalization was confirmed by micro-Raman and X-ray photoelectron spectroscopies, scanning transmission electron microscopy, and thermogravimetric analysis. The 1,3-DC reactions of münchnone dipole with graphene have been investigated using density functional theory to model graphene. Finally, we explored the reactivity and the processability of münchnone functionalized graphene to produce enriched nano biomaterials endowed with antimicrobial properties.
Collapse
Affiliation(s)
- Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Enza Fazio
- Department of Mathematical and Computational Sciences, Physics Science and Earth Science, University of Messina, V.le F. Stagno d’Alcontres 31, I-98166 Messina, Italy
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Placido Giuseppe Mineo
- Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy;
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.N.); (A.N.); (A.S.)
| |
Collapse
|
15
|
Lugiņina J, Linden M, Bazulis M, Kumpiņš V, Mishnev A, Popov SA, Golubeva TS, Waldvogel SR, Shults EE, Turks M. Electrosynthesis of Stable Betulin‐Derived Nitrile Oxides and their Application in Synthesis of Cytostatic Lupane‐Type Triterpenoid‐Isoxazole Conjugates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jevgeņija Lugiņina
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Martin Linden
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Māris Bazulis
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Viktors Kumpiņš
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis Aizkraukles Str. 21 Riga 1006 Latvia
| | - Sergey A. Popov
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Tatiana S. Golubeva
- The Federal Research Center Institute of Cytology and Genetics Acad. Lavrentyev Ave., 10 Novosibirsk 630090 Russia
| | - Siegfried R. Waldvogel
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 Mainz 55128 Germany
| | - Elvira E. Shults
- Novosibirsk Institute of Organic Chemistry Academician Lavrentjev Ave. 9 Novosibirsk 630090 Russia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry RigaTechnical University P. Valdena Str.3 Riga 1007 Latvia
| |
Collapse
|
16
|
Feng Q, Huang H, Sun J. Ru-Catalyzed [3 + 2] Cycloaddition of Nitrile Oxides and Electron-Rich Alkynes with Reversed Regioselectivity. Org Lett 2021; 23:2431-2436. [PMID: 33750136 DOI: 10.1021/acs.orglett.1c00273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polarity reversal ("umpolung") of a functional group can override its inherent reactivity and lead to distinct bond-forming modes. Herein we describe a rarely studied cycloaddition between nitrile oxides and electron-rich alkynes with reversed regioselectivity, leading to the useful 4-heterosubstituted isoxazoles. The use of a ruthenium catalyst completely overrides the inherent polarity of nitrile oxides. This reversed regioselectivity was also observed for their reactions with a range of electron-deficient alkynes.
Collapse
Affiliation(s)
- Qiang Feng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|