1
|
Wang X, Alajmi A, Wei Z, Alzanbaqi M, Wei N, Lambert C, Ismael A. Enhancing the Pressure-Sensitive Electrical Conductance of Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66290-66300. [PMID: 39561287 PMCID: PMC11622190 DOI: 10.1021/acsami.4c15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024]
Abstract
The inherent large HOMO-LUMO gap of alkyl thiol (CnS) self-assembled monolayers (SAMs) has limited their application in molecular electronics. This work demonstrates significant enhancement of mechano-electrical sensitivity in CnS SAMs by external compression, achieving a gauge factor (GF) of approximately 10 for C10S SAMs. This GF surpasses values reported for conjugated wires and DNA strands, highlighting the potential of CnS SAMs in mechanosensitive devices. Conductive atomic force microscopy (cAFM) investigations reveal a strong dependence of GF on the alkyl chain length in probe/CnS/Au junctions. This dependence arises from the combined influence of molecular tilting and probe penetration, facilitated by the low Young's modulus of alkyl chains. Theoretical simulations corroborate these findings, demonstrating a shift in the electrode Fermi level toward the molecular resonance region with increasing chain length and compression. Introducing a rigid graphene interlayer prevents probe penetration, resulting in a GF that is largely independent of the alkyl chain length. This highlights the critical role of probe penetration in maximizing mechano-electrical sensitivity. These findings pave the way for incorporating CnS SAMs into mechanosensitive and mechanocontrollable molecular electronic devices, including touch-sensitive electronic skin and advanced sensor technologies. This work demonstrates the potential of tailoring mechanical and electrical properties of SAMs through molecular engineering and interface modifications for optimized performance in specific applications.
Collapse
Affiliation(s)
- Xintai Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035 China
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Asma Alajmi
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Zhangchenyu Wei
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Mohammed Alzanbaqi
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Physics Department,
College of Science and Arts in Rabigh, King
Abdulaziz University, 344 Rabigh, Saudi Arabia
| | - Naixu Wei
- Zhejiang
Mashang GM2D Research Institute, Cangnan, Wenzhou, Zhejiang 325800, China
| | - Colin Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
2
|
Orza M, Summa FF, Zanasi R, Monaco G. A Study of Differential Topology on the Magnetically Induced Isotropically Averaged Lorentz Force Density of a Few Simple Molecules. Molecules 2024; 29:4502. [PMID: 39339497 PMCID: PMC11435034 DOI: 10.3390/molecules29184502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Quantum chemical topology addresses the study of the chemical structure by applying the tools of differential topology to scalar and vector fields obtained by quantum mechanics. Here, the magnetically induced isotropically averaged Lorentz force density was computed and topologically analyzed for 11 small molecules. Critical points (attractors, repellers, and saddles) were determined and trajectories connecting the attractors computed. It is shown that kinds and numbers of the critical points are to some extent transferable in similar molecules. CC bonds of different orders are endowed with critical points of different kinds close to their center. The sum of topological indices of the isolated critical points is influenced by the presence of repellers on the outer part of the molecules.
Collapse
Affiliation(s)
- Michele Orza
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", University of Salerno, Via G. Paolo II, 123, 84184 Fisciano, SA, Italy
| | - Francesco F Summa
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", University of Salerno, Via G. Paolo II, 123, 84184 Fisciano, SA, Italy
| | - Riccardo Zanasi
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", University of Salerno, Via G. Paolo II, 123, 84184 Fisciano, SA, Italy
| | - Guglielmo Monaco
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", University of Salerno, Via G. Paolo II, 123, 84184 Fisciano, SA, Italy
| |
Collapse
|
3
|
Xiong M, Lu Y, Zhong M, Chen L, Liu G, Ju W. Superlong Metal-Organic Framework Micro-/Nanofibers for Selective Vitamin Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012911 DOI: 10.1021/acs.langmuir.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Superlong MOF-74-type micro/nanofibers, which have aspect ratios much higher than 200, are synthesized via nanoparticulate MOF-mediated recrystallization. Co-MOF-74 microfibers have high crystallinity, whereas Co-MOF-74-II nanofibers are composed of nanocrystals and amorphous phases, even though they have nanofibrous morphology. Both MOFs consist of plenty of micropores with diameters in the range of 1.0 to 2.0 nm, and they exhibit high thermal stability with a decomposition temperature higher than 260.0 °C. The MOFs are demonstrated for selective absorption of some vitamins including riboflavin, folic acid, and 5-methyltetrahydrofolate. Co-MOF-74-II nanofibers can efficiently absorb riboflavin and folic acid from their aqueous solution with absorption percentages approaching 90.0%, and they have enhanced capability for absorbing tocopherol in methanol. The micro/nanofibrous morphology, together with the capability for selective vitamin absorption, makes the novel MOFs highly promising for applications in micro-solid-phase extraction.
Collapse
Affiliation(s)
- Mingxuan Xiong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Youli Lu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Mingzhu Zhong
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liyu Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Gangyi Liu
- Central Laboratory, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
- Shanghai Engineering Research Center of Phase I Clinical Research & Quality Consistency Evaluation for Drugs, Shanghai 200031, China
- Institute of Clinical Mass Spectrometry, Shanghai Academy of Experimental Medicine, Shanghai 200031, China
| | - Wenbo Ju
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
4
|
Jiang L, Cai Z, Cao Y, Fu S, Gu H, Zhu J, Cao W, Zhong L, Zhong J, Wu C, Wang K, Xia C, Lui S, Song B, Gong Q, Ai H. Facile Synthesis of Rigid Binuclear Manganese Complexes for Magnetic Resonance Angiography and SLC39A14-Mediated Hepatic Imaging. Bioconjug Chem 2024; 35:703-714. [PMID: 38708860 DOI: 10.1021/acs.bioconjchem.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Manganese(II)-based contrast agents (MBCAs) are potential candidates for gadolinium-free enhanced magnetic resonance imaging (MRI). In this work, a rigid binuclear MBCA (Mn2-PhDTA2) with a zero-length linker was developed via facile synthetic routes, while the other dimer (Mn2-TPA-PhDTA2) with a longer rigid linker was also synthesized via more complex steps. Although the molecular weight of Mn2-PhDTA2 is lower than that of Mn2-TPA-PhDTA2, their T1 relaxivities are similar, being increased by over 71% compared to the mononuclear Mn-PhDTA. In the presence of serum albumin, the relaxivity of Mn2-PhDTA2 was slightly lower than that of Mn2-TPA-PhDTA2, possibly due to the lower affinity constant. The transmetalation reaction with copper(II) ions confirmed that Mn2-PhDTA2 has an ideal kinetic inertness with a dissociation half-life of approximately 10.4 h under physiological conditions. In the variable-temperature 17O NMR study, both Mn-PhDTA and Mn2-PhDTA2 demonstrated a similar estimated q close to 1, indicating the formation of monohydrated complexes with each manganese(II) ion. In addition, Mn2-PhDTA2 demonstrated a superior contrast enhancement to Mn-PhDTA in in vivo vascular and hepatic MRI and can be rapidly cleared through a dual hepatic and renal excretion pattern. The hepatic uptake mechanism of Mn2-PhDTA2 mediated by SLC39A14 was validated in cellular uptake studies.
Collapse
Affiliation(s)
- Lingling Jiang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Yingzi Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengxiang Fu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Weidong Cao
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Lei Zhong
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Jie Zhong
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Kefeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Sichuan University, Chengdu 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Mortera-Carbonell AJ, Francisco E, Martín Pendás Á, Hernández-Trujillo J. The Ehrenfest force field: A perspective based on electron density functions. J Chem Phys 2023; 159:234110. [PMID: 38108480 DOI: 10.1063/5.0177631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023] Open
Abstract
The topology of the Ehrenfest force field (EhF) is investigated as a tool for describing local interactions in molecules and intermolecular complexes. The EhF is obtained by integrating the electronic force operator over the coordinates of all but one electron, which requires knowledge of both the electron density and the reduced pair density. For stationary states, the EhF can also be obtained as minus the divergence of the kinetic stress tensor, although this approach leads to well-documented erroneous asymptotic behavior at large distances from the nuclei. It is shown that these pathologies disappear using the electron density functions and that the EhF thus obtained displays the correct behavior in real space, with no spurious critical points or attractors. Therefore, its critical points can be unambiguously obtained and classified. Test cases, including strained molecules, isomerization reactions, and intermolecular interactions, were analyzed. Various chemically relevant facts are highlighted: for example, non-nuclear attractors are generally absent, potential hydrogen-hydrogen interactions are detected in crowded systems, and a bifurcation mechanism is observed in the isomerization of HCN. Moreover, the EhF atomic basins are less charged than those of the electron density. Although integration of the EhF over regions of real space can also be performed to yield the corresponding atomic forces, several numerical drawbacks still need to be solved if electron density functions are to be used for that purpose. Overall, the results obtained support the Ehrenfest force field as a reliable descriptor for the definition of atomic basins and molecular structure.
Collapse
Affiliation(s)
- Aldo J Mortera-Carbonell
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, Mexico
| | - Evelio Francisco
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Jesús Hernández-Trujillo
- Departamento de Física y Química Teórica, Facultad de Química, UNAM, Ciudad de México 04510, Mexico
| |
Collapse
|