1
|
Lim S, Kim TW, Park T, Heo YS, Yang S, Seo H, Suh J, Lee JU. Large-Scale Analysis of Defects in Atomically Thin Semiconductors using Hyperspectral Line Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400737. [PMID: 38874112 DOI: 10.1002/smll.202400737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Point defects play a crucial role in determining the properties of atomically thin semiconductors. This work demonstrates the controlled formation of different types of defects and their comprehensive optical characterization using hyperspectral line imaging (HSLI). Distinct optical responses are observed in monolayer semiconductors grown under different stoichiometries using metal-organic chemical vapor deposition. HSLI enables the simultaneous measurement of 400 spectra, allowing for statistical analysis of optical signatures at close to a centimeter scale. The study discovers that chalcogen-rich samples exhibit remarkable optical uniformity due to reduced precursor accumulation compared to the metal-rich case. The utilization of HSLI as a facile and reliable characterization tool pushes the boundaries of potential applications for atomically thin semiconductors in future devices.
Collapse
Affiliation(s)
- Seungjae Lim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Tae Wan Kim
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Taejoon Park
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Yoon Seong Heo
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Seonguk Yang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Hosung Seo
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| | - Joonki Suh
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
- Department of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae-Ung Lee
- Department of Physics and Department of Energy Systems Research, Ajou University, Suwon, 16499, South Korea
| |
Collapse
|
2
|
Sgouros AP, Michos FI, Sigalas MM, Kalosakas G. Thermal Relaxation in Janus Transition Metal Dichalcogenide Bilayers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4200. [PMID: 39274590 PMCID: PMC11396493 DOI: 10.3390/ma17174200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
In this work, we employ molecular dynamics simulations with semi-empirical interatomic potentials to explore heat dissipation in Janus transition metal dichalcogenides (JTMDs). The middle atomic layer is composed of either molybdenum (Mo) or tungsten (W) atoms, and the top and bottom atomic layers consist of sulfur (S) and selenium (Se) atoms, respectively. Various nanomaterials have been investigated, including both pristine JTMDs and nanostructures incorporating inner triangular regions with a composition distinct from the outer bulk material. At the beginning of our simulations, a temperature gradient across the system is imposed by heating the central region to a high temperature while the surrounding area remains at room temperature. Once a steady state is reached, characterized by a constant energy flux, the temperature control in the central region is switched off. The heat attenuation is investigated by monitoring the characteristic relaxation time (τav) of the local temperature at the central region toward thermal equilibrium. We find that SMoSe JTMDs exhibit thermal attenuation similar to conventional TMDs (τav~10-15 ps). On the contrary, SWSe JTMDs feature relaxation times up to two times as high (τav~14-28 ps). Forming triangular lateral heterostructures in their surfaces leads to a significant slowdown in heat attenuation by up to about an order of magnitude (τav~100 ps).
Collapse
Affiliation(s)
- Aristotelis P Sgouros
- School of Chemical Engineering, National Technical University of Athens (NTUA), GR-15780 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vass. Constantinou 48, GR-11635 Athens, Greece
| | - Fotios I Michos
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - Michail M Sigalas
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| | - George Kalosakas
- Department of Materials Science, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
3
|
Shi W, Wang L, Yang N. Investigation of Grain Boundary Effects in Sm 0.2Ce 0.8O 2-x Thin Film Memristors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3360. [PMID: 38998440 PMCID: PMC11243247 DOI: 10.3390/ma17133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Cerium-based materials (CeO2-x) are of significant interest in the development of vacancy-modulated resistive switching (RS) memory devices. However, the influence of grain boundaries on the performance of memristors is very limited. To fill this gap, this study explores the influence of grain boundaries in cerium-based thin film resistive random-access memory (RRAM) devices. Sm0.2Ce0.8O2-x (SDC20) thin films were deposited on (100)-oriented Nb-doped SrTiO3 (NSTO) and (110)-oriented NSTO substrates using pulsed laser deposition (PLD). Devices constructed with a Pt/SDC20/NSTO structure exhibited reversible and stable bipolar resistive switching (RS) behavior. The differences in conduction mechanisms between single-crystal and polycrystalline devices were confirmed, with single-crystal devices displaying a larger resistance window and higher stability. Combining the results of XPS and I-V curve fitting, it was confirmed that defects near the grain boundaries in the SDC-based memristors capture electrons, thereby affecting the overall performance of the RRAM devices.
Collapse
Affiliation(s)
| | | | - Nan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; (W.S.); (L.W.)
| |
Collapse
|
4
|
Bianchi MG, Risplendi F, Re Fiorentin M, Cicero G. Engineering the Electrical and Optical Properties of WS 2 Monolayers via Defect Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305162. [PMID: 38009517 PMCID: PMC10811516 DOI: 10.1002/advs.202305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Indexed: 11/29/2023]
Abstract
Two-dimensional (2D) materials as tungsten disulphide (WS2 ) are rising as the ideal platform for the next generation of nanoscale devices due to the excellent electric-transport and optical properties. However, the presence of defects in the as grown samples represents one of the main limiting factors for commercial applications. At the same time, WS2 properties are frequently tailored by introducing impurities at specific sites. Aim of this review paper is to present a complete description and discussion of the effects of both intentional and unintentional defects in WS2 , by an in depth analysis of the recent experimental and theoretical investigations reported in the literature. First, the most frequent intrinsic defects in WS2 are presented and their effects in the readily synthetized material are discussed. Possible solutions to remove and heal unintentional defects are also analyzed. Following, different doping schemes are reported, including the traditional substitution approach and innovative techniques based on the surface charge transfer with adsorbed atoms or molecules. The plethora of WS2 monolayer modifications presented in this review and the systematic analysis of the corresponding optical and electronic properties, represent strategic degrees of freedom the researchers may exploit to tailor WS2 optical and electronic properties for specific device applications.
Collapse
Affiliation(s)
- Michele Giovanni Bianchi
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Francesca Risplendi
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Michele Re Fiorentin
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| | - Giancarlo Cicero
- Department of Applied Science and TechnologyPolitecnico di Torinocorso Duca degli Abruzzi 24Torino10129Italy
| |
Collapse
|
5
|
Ahn IH, Kim DY, Yang W. Inspection of the Defect State Using the Mobility Spectrum Analysis Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2773. [PMID: 36014638 PMCID: PMC9412662 DOI: 10.3390/nano12162773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Mobility spectrum analysis (MSA) is a method that enables the carrier density (and mobility) separation of the majority and minority carriers in multicarrier semiconductors, respectively. In this paper, we use the p-GaAs layer in order to demonstrate that the MSA can perform unique facilities for the defect analysis by using its resolvable features for the carriers. Using two proven methods, we reveal that the defect state can be anticipated at the characteristic temperature Tdeep, in which the ratio (RNn/Nh) that is associated with the density of the minority carrier Nn, to the density of the majority carrier Nh, exceeds 50%. (1) Using a p-GaAs Schottky diode in a reverse bias regime, the position of the deep level transient spectroscopy (DLTS) peak is shown directly as the defect signal. (2) Furthermore, by examining the current-voltage-temperature (I-V-T) characteristics in the forward bias regime, this peak position has been indirectly revealed as the generation-recombination center. The DLTS signals are dominant around the Tdeep, according to the window rate, and it has been shown that the peak variation range is consistent with the temperature range of the temperature-dependent generation-recombination peak. The Tdeep is also consistent with the temperature-dependent thermionic emission peak position. By having only RNn/Nh through the MSA, it is possible to intuitively determine the existence and the peak position of the DLTS signal, and the majority carrier's density enables a more accurate extraction of the deep trap density in the DLTS analysis.
Collapse
Affiliation(s)
- Il-Ho Ahn
- Quantum-Functional Semiconductor Research Center, Dongguk University—Seoul, Seoul 04620, Korea
| | - Deuk Young Kim
- Quantum-Functional Semiconductor Research Center, Dongguk University—Seoul, Seoul 04620, Korea
- Division of Physics & Semiconductor Science, Dongguk University—Seoul, Seoul 04620, Korea
| | - Woochul Yang
- Quantum-Functional Semiconductor Research Center, Dongguk University—Seoul, Seoul 04620, Korea
- Division of Physics & Semiconductor Science, Dongguk University—Seoul, Seoul 04620, Korea
| |
Collapse
|
6
|
Sun H, Li D, Yue X, Hong R, Yang W, Liu C, Xu H, Lu J, Dong L, Wang G, Li D. A Review of Transition Metal Dichalcogenides-Based Biosensors. Front Bioeng Biotechnol 2022; 10:941135. [PMID: 35769098 PMCID: PMC9234135 DOI: 10.3389/fbioe.2022.941135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metal dichalcogenides (TMDCs) are widely used in biosensing applications due to their excellent physical and chemical properties. Due to the properties of biomaterial targets, the biggest challenge that biosensors face now is how to improve the sensitivity and stability. A lot of materials had been used to enhance the target signal. Among them, TMDCs show excellent performance in enhancing biosensing signals because of their metallic and semi-conducting electrical capabilities, tunable band gap, large specific surface area and so on. Here, we review different functionalization methods and research progress of TMDCs-based biosensors. The modification methods of TMDCs for biosensor fabrication mainly include two strategies: non-covalent and covalent interaction. The article summarizes the advantages and disadvantages of different modification strategies and their effects on biosensing performance. The authors present the challenges and issues that TMDCs need to be addressed in biosensor applications. Finally, the review expresses the positive application prospects of TMDCs-based biosensors in the future.
Collapse
Affiliation(s)
- Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Dongyang Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| |
Collapse
|