1
|
Slobodskaia SS, Tsebrikova GS, Solov'ev VP, Ivanova IS, Pyatova EN, Baulin VE, Safiulina AM, Tsivadze AY. Effect of the stability of 1,3-bis(diphenylphosphoryl)-2-oxapropane complexes on the separation of lanthanide ions and their detection. Dalton Trans 2024; 53:17361-17369. [PMID: 39387126 DOI: 10.1039/d4dt02325k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Phosphoryl podands of neutral type with a flexible ethylene glycol chain and diphenylphosphorylmethyl end groups are known for their complexation properties towards various cations. In this work, the complexation process between 1,3-bis(diphenylphosphoryl)-2-oxapropane (L) and lanthanide ions was studied. Namely, the stability constants of lanthanide complexes with L in acetonitrile were estimated by the method of spectrophotometric titration. It was found that the stability constants of Ln3+ complexes with L increase in the lanthanide series, which is consistent with the extraction and ion-selective properties of L. The extraction ability of L and this ligand in the presence of ionic liquids (ILs) such as methyltrioctylammonium nitrate (MTOAN) and bis[(trifluoromethyl)sulfonyl]imide 1-butyl-3-methylimidazolium (C4mimTf2N) was studied. It was found that in the presence of ILs, L extracts the elements of the yttrium subgroup of lanthanides much better than those of the cerium subgroup: SFLu/Ce(L-MTOAN) = 2.29; SFLu/Ce(L-C4mimTf2N) = 110.38. The use of the L-C4mimTf2N mixture in the processes of lanthanide separation into subgroups is much more efficient than the use of L without the addition of ILs or the use of the L-MTOAN mixture. The ion-selective properties of L towards Ln3+ ions were studied. Podand L exhibits potentiometric selectivity to Lu3+ ions.
Collapse
Affiliation(s)
- Serafima S Slobodskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Galina S Tsebrikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Vitaly P Solov'ev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| | - Irina S Ivanova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N Pyatova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir E Baulin
- Institute of Physiologically Active Substances, Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region 142432, Russia
| | - Alfiya M Safiulina
- Joint-Stock Company "Advanced Research Institute of Inorganic Materials named after Academician A. A. Bochvar", Moscow 123098, Russia
- Mendeleev Russian University of Chemical Technology, Moscow 125047, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
2
|
Hosoya S, Shoji S, Nakanishi T, Kobayashi M, Wang M, Fushimi K, Taketsugu T, Kitagawa Y, Hasegawa Y. Guest-Responsive Near-Infrared-Luminescent Metal-Organic Cage Organized by Porphyrin Dyes and Yb(III) Complexes. Inorg Chem 2024; 63:10108-10113. [PMID: 38771149 DOI: 10.1021/acs.inorgchem.4c01348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic cages (MOCs) with luminophores have significant advantages for the facile detection of specific molecules based on turn-on or turn-off luminescence changes induced by host-guest complexation. One important challenge is the development of turn-on-type near-infrared (NIR)-luminescent MOCs. In this study, we synthesized a novel MOC consisting of two porphyrin dyes linked by four Yb(III) complexes, which exhibit bimodal red and NIR fluorescence signals upon photoexcitation of the porphyrin π system. Single-crystal X-ray structural analysis and computational molecular modeling revealed that planar aromatic perfluorocarbons were intercalated into the MOC. The tight packing between the MOC and guests enhanced the NIR fluorescence of Yb(III) by suppressing energy transfer from the photoexcited porphyrin to oxygen molecules. Guest-responsive turn-on NIR fluorescence changes in an MOC were successfully demonstrated.
Collapse
Affiliation(s)
- Shota Hosoya
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Sunao Shoji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Takayuki Nakanishi
- Research Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masato Kobayashi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Inage K, Wang M, Hasegawa Y, Kitagawa Y. Effective photosensitized emission of a Tb(III) complex using a β-diketonate photosensitizer and an oxygen barrier system in a thermally populated triplet state. Dalton Trans 2024; 53:8555-8562. [PMID: 38567493 DOI: 10.1039/d4dt00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Photosensitizer design of luminescent terbium (Tb(III)) complexes with narrow bandwidths is important for advancing luminescent materials. In this study, we report an effective photosensitizer model in a thermally populated lowest excited triplet (T1) state during Tb(III) emission. The Tb(III) complex comprises a Tb(III) ion (serving as an emission center), hexafluoroacetylacetonates (acting as photosensitizer ligands), and bulky cyclohexyl group-attached phosphine-oxide-type ligands (functioning as an oxygen barrier system). Emission properties including emission and excitation spectra, ligand-excited emission quantum yields, and emission lifetimes were evaluated in the absence and presence of oxygen. Coordination geometry structures were determined through analysing single-crystal structures. The electronic structure based on 4f-orbitals was estimated from radiative rate constants and quantum chemical calculations. The bulky phosphine oxide ligand not only provides an oxygen barrier system but also induces an electronic structural modulation based on 4f-orbitals, allowing for effective photosensitized Tb(III) emission in a thermally populated ligand T1 state in air.
Collapse
Affiliation(s)
- Kota Inage
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mengfei Wang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
4
|
Wang M, Kitagawa Y, Hasegawa Y. Current Development of Lanthanide Complexes for Biomedical Applications. Chem Asian J 2024; 19:e202400038. [PMID: 38348520 DOI: 10.1002/asia.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Luminescent molecule-based bioimaging system is widely used for precise localization and distinction of cancer/tumor cells. Luminescent lanthanide (Ln(III)) complexes offer long-lived (sub-millisecond time scale) and sharp (FWHM <10 nm) emission, arising from the forbidden 4f-4f electronic transitions. Luminescent Ln(III) complex-based bioimaging has emerged as a promising option for both in vitro and in vivo visualizations. In this mini-review, the historical development and recent significant progress of luminescent Ln(III) probes for bioapplications are introduced. The recent studies are mainly focused on three points: (i) the structural modifications of Ln(III) complexes in both macrocyclic and small ligands, (ii) the acquirement of high resolution luminescence images of cancer/tumor cells and (iii) the constructions of ratiometric biosensors. Furthermore, our recent study is explained as a new Cancer GPS (cancer grade probing for determining tumor grade through photophysical property analyses of intracellular Eu(III) complex.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
5
|
Hossack C, Cahill C, Besson C. Utility of all-pyrazole heteroscorpionates in f-element chemistry. Dalton Trans 2023; 52:17656-17665. [PMID: 37943084 DOI: 10.1039/d3dt02737f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Since their discovery in 1966, scorpionate ligands have been utilized to make coordination compounds for a variety of applications such as: studying organometallic reactions, biomimetic complexes, light-emitting materials and single-ion magnets. The recent development of a solvent-free pyrazole substitution chemistry has yielded the quantitative synthesis of asymmetrically functionalized all-pyrazole heteroscorpionate ligands. In this frontier article, we highlight the utility of all-pyrazole heteroscorpionates, specifically, nitro-trispyrazolylborates, in f-element chemistry. They offer great versatility in coordinating ability, donor strength, steric bulk and even optical charge transfer properties, all of which can be used to tune the properties of resultant complexes with metal ions. We show how they can impart structural diversity, sensitize Ln3+ luminescence and engender magnetic anisotropy and slow magnetic relaxation in the ion they coordinate. Additionally, we comment on the future of functionalized trispyrazolyl scorpionates, which includes enabling post-synthetic modifications of f-element complexes and becoming a platform to study the electronic properties of low oxidation state actinides.
Collapse
Affiliation(s)
- Christopher Hossack
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, USA.
| | - Christopher Cahill
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, USA.
| | - Claire Besson
- Department of Chemistry, The George Washington University, 800 22nd Street, NW, Washington, D.C. 20052, USA.
| |
Collapse
|