1
|
Krizanac M, Mass Sanchez PB, Weiskirchen R, Schröder SK. Overview of the expression patterns and roles of Lipocalin 2 in the reproductive system. Front Endocrinol (Lausanne) 2024; 15:1365602. [PMID: 38645429 PMCID: PMC11026566 DOI: 10.3389/fendo.2024.1365602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The 25 kDa-sized protein Lipocalin 2 (LCN2) was originally isolated from human neutrophil granulocytes more than 30 years ago. LCN2 is an emerging player in innate immune defense, as it reduces bacterial growth due to its ability to sequester iron-containing bacterial siderophores. On the other hand, LCN2 also serves as a transporter for various hydrophobic substances due to its β-barrel shaped structure. Over the years, LCN2 has been detected in many other cell types including epithelial cells, astrocytes, and hepatocytes. Studies have clearly shown that aberrant expression of LCN2 is associated with a variety of disorders and malignancies, including several diseases of the reproductive system. Furthermore, LCN2 was proposed as a non-invasive prognostic and/or diagnostic biomarker in this context. Although several studies have shed light on the role of LCN2 in various disorders of the female and male reproductive systems, including tumorigenesis, a comprehensive understanding of the physiological function of LCN2 in the reproductive tract is still lacking. However, there is evidence that LCN2 is directly related to fertility, as global depletion of Lcn2 in mice has a negative effect on their pregnancy rate. Since LCN2 expression can be regulated by steroid hormones, it is not surprising that its expression fluctuates greatly during remodeling processes in the female reproductive tract, especially in the uterus. Well-founded details about the expression and regulation of LCN2 in a healthy reproductive state and also about possible changes during reproductive aging could contribute to a better understanding of LCN2 as a target in various diseases. Therefore, the present review summarizes current knowledge about LCN2 in the reproductive system, including studies in rodents and humans, and discusses changes in LCN2 expression during pathological events. The limited data suggest that LCN2 is expressed and regulated differently in healthy male and female reproductive organs.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Kessel JC, Weiskirchen R, Schröder SK. Expression Analysis of Lipocalin 2 (LCN2) in Reproductive and Non-Reproductive Tissues of Esr1-Deficient Mice. Int J Mol Sci 2023; 24:ijms24119280. [PMID: 37298232 DOI: 10.3390/ijms24119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Estrogen receptor alpha (ERα) is widely expressed in reproductive organs, but also in non-reproductive tissues of females and males. There is evidence that lipocalin 2 (LCN2), which has diverse immunological and metabolic functions, is regulated by ERα in adipose tissue. However, in many other tissues, the impact of ERα on LCN2 expression has not been studied yet. Therefore, we used an Esr1-deficient mouse strain and analyzed LCN2 expression in reproductive (ovary, testes) and non-reproductive tissues (kidney, spleen, liver, lung) of both sexes. Tissues collected from adult wild-type (WT) and Esr1-deficient animals were analyzed by immunohistochemistry, Western blot analysis, and RT-qPCR for Lcn2 expression. In non-reproductive tissues, only minor genotype- or sex-specific differences in LCN2 expression were detected. In contrast, significant differences in LCN2 expression were observed in reproductive tissues. Particularly, there was a strong increase in LCN2 in Esr1-deficient ovaries when compared to WTs. In summary, we found an inverse correlation between the presence of ERα and the expression of LCN2 in testes and ovaries. Our results provide an important basis to better understand LCN2 regulation in the context of hormones and in health and disease.
Collapse
Affiliation(s)
- Jan C Kessel
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Sarah K Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Moura MS, Lozano AFQ, Tavares BM, Figueiredo TM, Franco de Barros JW, Valencise L, de Grava Kempinas W. Prenatal exposure to sertraline, associated or not with stress, can negatively program somatic and neurobehavioral development of female rats, and dysregulate reproductive function in adulthood. Reprod Toxicol 2023; 116:108336. [PMID: 36669626 DOI: 10.1016/j.reprotox.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are prescribed to pregnant women for treating mental illnesses. Among the drugs of this class, sertraline (ST) is the antidepressant therapy recommended most frequently. Therefore, this study aimed to evaluate the impact of gestational ST treatment on reproductive parameters and toxicological target organs of rat female offspring, as well as on somatic, reflex and neurobehavioral development, in a model of maternal adversity. Pregnant Wistar rats received vehicle (filtered water) or ST hydrochloride (20 mg/Kg/day diluted in vehicle) by oral gavage, associated or not with restraint stress for 1 h/day from gestational days 13-20. F1 female offspring was evaluated on reproductive parameters, body weight and somatic and reflex milestones from postnatal day (PND) 1. On PNDs 25 and 72, the elevated-plus-maze test was performed, while toxicological target organs were evaluated on PNDs 42 and 80. In utero exposure to ST, regardless of exposure to stress, reduced body weight at birth and affected the somatic development and estrous cycle. The absolute and relative thyroid weights were increased in Stress/ST group during puberty and adulthood, while the percentage of ovarian structures and the absolute uterine weight were altered in this group on PND 80. Prenatal exposure only to ST reduced initial body weight gain, delayed fur development and increased anxiety-like behavior on PND 25. Thus, this experimental study suggests that intrauterine exposure to ST disrupts the fetal environment and can negatively program serotonin-regulated processes. Furthermore, it impacts thyroid weight when associated with stress.
Collapse
Affiliation(s)
- Mayara Silva Moura
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Ana Flávia Quiarato Lozano
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Bruna Marques Tavares
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Thamíris Moreira Figueiredo
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jorge Willian Franco de Barros
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lethicia Valencise
- Graduate Program in General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, SP, Brazil; Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Wilma de Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
4
|
Figueiredo TM, de Barros JWF, Dos Santos Borges C, Pacheco TL, de Lima Rosa J, Anselmo-Franci JA, Kempinas WDG. Reproductive outcomes of neonatal exposure to betamethasone in male and female rats. J Appl Toxicol 2022; 43:752-763. [PMID: 36511433 DOI: 10.1002/jat.4423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Betamethasone (BM) is the drug of choice for antenatal corticosteroid therapy for women at risk of preterm delivery because it induces fetal lung maturation and enhances survival after birth. However, our group reported evidence of fetal programming and impaired reproductive development and function in rats exposed during the critical window of genital system development. Therefore, we aimed to investigate the effects of BM on the sexual development of rats in the period that corresponds to antenatal corticosteroid therapy in humans. Male and female rats were exposed subcutaneously to BM at 0.1 μg/g of pups' body weight or to a NaCl 0.9% solution (control) on postnatal days 1-3. It was observed that neonatal exposure to BM decreased body weight and weight gain in male and female rats during treatment. The estrous cycle was deregulated and LH level was decreased in female rats. In male rats, the sperm concentration in the caput-corpus of the epididymis was decreased, whereas the sperm transit time and sperm concentration in the cauda of the epididymis were increased. Our results demonstrated that neonatal exposure to BM impaired body growth of male and female rats, deregulated the estrous cycle of female rats, and altered sperm quality of male rats. Therefore, BM exposure from postnatal days 1 to 3 corroborated results previously observed after prenatal exposure to this drug. Despite the recognized importance of human antenatal corticosteroid therapy, the findings of this study should encourage further studies in order to minimize possible adverse postnatal effects.
Collapse
Affiliation(s)
- Thamiris Moreira Figueiredo
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Jorge Willian Franco de Barros
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Cibele Dos Santos Borges
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Tainá Louise Pacheco
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Josiane de Lima Rosa
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
5
|
Immunohistochemical Detection of Estrogen Receptor-Beta (ERβ) with PPZ0506 Antibody in Murine Tissue: From Pitfalls to Optimization. Biomedicines 2022; 10:biomedicines10123100. [PMID: 36551855 PMCID: PMC9775465 DOI: 10.3390/biomedicines10123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
The estrogen receptor beta (ERβ) is physiologically essential for reproductive biology and is implicated in various diseases. However, despite more than 20 years of intensive research on ERβ, there are still uncertainties about its distribution in tissues and cellular expression. Several studies show contrasts between mRNA and protein levels, and the use of knockout strategies revealed that many commercially available antibodies gave false-positive expression results. Recently, a specific monoclonal antibody against human ERβ (PPZ0506) showed cross-reactivity with rodents and was optimized for the detection of rat ERβ. Herein, we established an immunohistochemical detection protocol for ERβ protein in mouse tissue. Staining was optimized on murine ovaries, as granulosa cells are known to strongly express ERβ. The staining results were confirmed by western blot analysis and RT-PCR. To obtain accurate and reliable staining results, different staining conditions were tested in paraffin-embedded tissues. Different pitfalls were encountered in immunohistochemical detection. Strong heat-induced epitope retrieval (HIER) and appropriate antibody dilution were required to visualize specific nuclear expression of ERβ. Finally, the specificity of the antibody was confirmed by using ovaries from Esr2-depleted mice. However, in some animals, strong (non-specific) background staining appeared. These signals could not be significantly alleviated with commercially available additional blocking solutions and are most likely due to estrus-dependent expression of endogenous immunoglobulins. In summary, our study showed that the antibody PPZ0506, originally directed against human ERβ, is also suitable for reliable detection of murine ERβ. An established staining protocol mitigated ambiguities regarding the expression and distribution of ERβ in different tissues and will contribute to an improved understanding of its role and functions in murine tissues in the future.
Collapse
|
6
|
Zou Y, Pei J, Wang Y, Chen Q, Sun M, Kang L, Zhang X, Zhang L, Gao X, Lin Z. The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. Int J Mol Sci 2022; 23:ijms23158634. [PMID: 35955761 PMCID: PMC9368982 DOI: 10.3390/ijms23158634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Deficiency in scavenger receptor class B, member 2 (SCARB2) is related to both Gaucher disease (GD) and Parkinson’s disease (PD), which are both neurodegenerative-related diseases without cure. Although both diseases lead to weight loss, which affects the quality of life and the progress of diseases, the underlying molecular mechanism is still unclear. In this study, we found that Scarb2−/− mice showed significantly reduced lipid storage in white fat tissues (WAT) compared to WT mice on a regular chow diet. However, the phenotype is independent of heat production, activity, food intake or energy absorption. Furthermore, adipocyte differentiation and cholesterol homeostasis were unaffected. We found that the impaired lipid accumulation of Adiponectin-cre; Scarb2fl/fl mice was due to the imbalance between glycolysis and oxidative phosphorylation (OXPHOS). Mechanistically, the mechanistic target of rapamycin complex 1 (mTORC1)/ eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) pathway was down-regulated in Scarb2 deficient adipocytes, leading to impaired mitochondrial respiration and enhanced glycolysis. Altogether, we reveal the role of SCARB2 in metabolism regulation besides the nervous system, which provides a theoretical basis for weight loss treatment of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yujie Zou
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Jingwen Pei
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Yushu Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Qin Chen
- Department of Oral Surgery, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai 200240, China;
| | - Minli Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Lulu Kang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Xuyuan Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Liguo Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| | - Zhaoyu Lin
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| |
Collapse
|
7
|
Zhang L, Long W, Xu W, Chen X, Zhao X, Wu B. Digital Cell Atlas of Mouse Uterus: From Regenerative Stage to Maturational Stage. Front Genet 2022; 13:847646. [PMID: 35669188 PMCID: PMC9163836 DOI: 10.3389/fgene.2022.847646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022] Open
Abstract
Endometrium undergoes repeated repair and regeneration during the menstrual cycle. Previous attempts using gene expression data to define the menstrual cycle failed to come to an agreement. Here we used single-cell RNA sequencing data of C57BL/6J mice uteri to construct a novel integrated cell atlas of mice uteri from the regenerative endometrium to the maturational endometrium at the single-cell level, providing a more accurate cytological-based elucidation for the changes that occurred in the endometrium during the estrus cycle. Based on the expression levels of proliferating cell nuclear antigen, differentially expressed genes, and gene ontology terms, we delineated in detail the transitions of epithelial cells, stromal cells, and immune cells that happened during the estrus cycle. The transcription factors that shaped the differentiation of the mononuclear phagocyte system had been proposed, being Mafb, Irf7, and Nr4a1. The amounts and functions of immune cells varied sharply in two stages, especially NK cells and macrophages. We also found putative uterus tissue-resident macrophages and identified potential endometrial mesenchymal stem cells (high expression of Cd34, Pdgfrb, Aldh1a2) in vivo. The cell atlas of mice uteri presented here would improve our understanding of the transitions that occurred in the endometrium from the regenerative endometrium to the maturational endometrium. With the assistance of a normal cell atlas as a reference, we may identify morphologically unaffected abnormalities in future clinical practice. Cautions would be needed when adopting our conclusions, for the limited number of mice that participated in this study may affect the strength of our conclusions.
Collapse
Affiliation(s)
- Leyi Zhang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenying Long
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Wanwan Xu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiuying Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xiaofeng Zhao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Bingbing Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- *Correspondence: Bingbing Wu,
| |
Collapse
|
8
|
Lu H, Ma L, Zhang Y, Feng Y, Zhang J, Wang S. Current Animal Model Systems for Ovarian Aging Research. Aging Dis 2022; 13:1183-1195. [PMID: 35855343 PMCID: PMC9286907 DOI: 10.14336/ad.2021.1209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/07/2021] [Indexed: 11/15/2022] Open
Abstract
Ovarian aging leads to menopause, loss of fertility and other disorders in multiple organs, which brings great distress to women. For ethical reasons, it is impossible to use humans as direct study subjects for aging research. Therefore, biomedical researchers have employed different non-human organisms to study ovarian aging, including worms, fruit flies, fishes, amphibians, birds, mice, rats, cavies, rabbits, pigs, sheep, cows, horses, monkeys, and apes. Because each of these model organisms has its own features, multiple factors, such as size, anatomical structure, cost, ease of operation, fertility, generation time, lifespan, and gene heredity, should be carefully considered when selecting a model system to study ovarian aging. An appropriate model organism would help researchers explore the risk factors and elucidate molecular mechanisms underlying declined ovarian functions, which might be conducive to preventing or delaying the ovarian aging process. This article will offer an overview on several currently available and commonly used model organisms for ovarian aging research by comparing their pros and cons. In doing so, we hope to provide useful information for ovarian aging researchers.
Collapse
Affiliation(s)
- Huan Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Lingwei Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Yanzhi Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
- Correspondence should be addressed to: Dr. Shixuan Wang () and Dr. Jinjin Zhang (), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China.
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
- Correspondence should be addressed to: Dr. Shixuan Wang () and Dr. Jinjin Zhang (), Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei, China
| |
Collapse
|
9
|
Nho JH, Lee HJ, Lee SY, Jang JH, Yang BD, Jeong JH, Lee GY, Cho HW, Kim JC, Jung HK. A 13-week repeated oral dose toxicity evaluation and a 4-week recovery evaluation of the Sam So Eum (SSE) in male and female rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112988. [PMID: 32446926 DOI: 10.1016/j.jep.2020.112988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/17/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHAMACOLOGICAL RELEVANCE Sam So Eum (SSE), used in traditional Korean medicine, has been prescribed for the treatment of various ailments including emesis, and fever for centuries. SSE is known by several different names (Shen Su Yin in traditional Chinese medicine; Jin So In traditional Japanese Kampo medicine). It is a mixture of medicinal plants including Panax ginseng C. A. Mey., Perilla frutescens (L.) Britton, and Peucedanum praeruptorum Dunn. Studies have revealed that SSE has many pharmacological effects including anti-inflammatory, anti-cancer, and anti-allergic properties, but its toxic effects have not been evaluated in vivo. Recently, the use of traditional medicinal herbs to treat various diseases has increased, owing to increased number of studies supporting their efficacy. However, safety evaluations for toxicity and other adverse effects have not been extensive. It is commonly considered that natural products extracted from traditional medicinal herbs are safer than synthetic drugs, but this lacks a scientific basis. Thus, in this study, we evaluated the toxicity of SSE in male and female rats. AIM OF THE STUDY To evaluated the safety of SSE in male and female rats. MATERIALS AND METHODS SSE was administered orally for 13 weeks at 1000, 2000, and 4000 mg kg-1·day-1, and then the rats were maintained for 4 weeks without SSE administration (recovery evaluation). RESULTS We observed the animals for changes in clinical signs, including hematological parameters, and food consumption; serum chemistry profiling and urinalysis were also carried out. Creatinine levels in the serum were significantly increased following oral administration of SSE at 2000 and 4000 mg kg-1·day-1 in male and female rats, but returned to the normal levels during the recovery period. In addition, SSE administration does not cause kidney and liver toxicity. Thus, we determined that the no-observed-adverse-effect level of SSE is 4000 mg kg-1·day-1. The no-observed-effect level of SSE was determined to be 1000 mg kg-1·day-1, because serum creatinine was increased by oral administration of SSE at 2000 and 4000 mg kg-1·day-1 in male and female rats. CONCLUSIONS SSE administration does not cause toxicity at 4000 mg kg-1·day-1 in male and female rats.
Collapse
Affiliation(s)
- Jong-Hyun Nho
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Hyun-Joo Lee
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Seon-Yu Lee
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Ji-Hun Jang
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Beo-Deul Yang
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Ji-Hyun Jeong
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Guk-Yeo Lee
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Hyun-Woo Cho
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| | - Ho-Kyung Jung
- Department of Traditional Korean Medicine Resource Development, National Development Institute of Korean Medicine, Jangheung-gun, 59338, South Korea; College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
10
|
Wang Y, Zhao P, Song Z, Du X, Huo X, Lu J, Liu X, Lv J, Li C, Guo M, Chen Z. Generation of Gene-Knockout Mongolian Gerbils via CRISPR/Cas9 System. Front Bioeng Biotechnol 2020; 8:780. [PMID: 32733872 PMCID: PMC7360674 DOI: 10.3389/fbioe.2020.00780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 12/27/2022] Open
Abstract
The Mongolian gerbil (Meriones unguiculatus), a well-known "multifunctional" experimental animal, plays a crucial role in the research of hearing, cerebrovascular diseases and Helicobacter pylori infection. Although the whole-genome sequencing of Mongolian gerbils has been recently completed, lack of valid gene-editing systems for gerbils largely limited the further usage of Mongolian gerbils in biomedical research. Here, efficient targeted mutagenesis in Mongolian gerbils was successfully conducted by pronuclear injection with Cas9 protein and single-guide RNAs (sgRNAs) targeting Cystatin C (Cst3) or Apolipoprotein A-II (Apoa2). We found that 22 h after human chorionic gonadotropin (hCG) injection, zygote microinjection was conducted, and the injected zygotes were transferred into the pseudopregnant gerbils, which were induced by injecting equine chorionic gonadotropin (eCG) and hCG at a 70 h interval and being caged with ligated male gerbils. We successfully obtained Cst3 and Apoa2 gene knockout gerbils with the knockout efficiencies of 55 and 30.9%, respectively. No off-target effects were detected in all knockout gerbils and the mutations can be germline-transmitted. The absence of CST3 protein was observed in the tissues of homozygous Cst3 knockout (Cst3-KO) gerbils. Interestingly, we found that disruption of the Cst3 gene led to more severe brain damage and neurological deficits after unilateral carotid artery ligation, thereby indicating that the gene modifications happened at both genetic and functional levels. In conclusion, we successfully generated a CRISPR/Cas9 system based genome editing platform for Mongolian gerbils, which provided a foundation for obtaining other genetically modified gerbil models for biomedical research.
Collapse
Affiliation(s)
- Yan Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Peikun Zhao
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Zidai Song
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Ryabukha YA, Petrova DA, Zatsepina OV. Quality of Preovulatory (GV) Oocytes in Mice after Injection of eCG at Various Stages of the Estrous Cycle. Bull Exp Biol Med 2020; 168:385-389. [PMID: 31938908 DOI: 10.1007/s10517-020-04715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/24/2022]
Abstract
We studied the influence of the estrous cycle on the morphology of preovulatory (germinal vesicle, GV) oocytes in mice and their capacity to meiotic maturation in vitro. After standard injections of eCG gonadotropin (PMSG, Follimag) to females at different stages of the estrous cycle, the maximum levels of GV oocytes (26±1/mouse) were isolated from the ovaries of animals injected with the hormone during estrus. The capacity of isolated GV oocytes to meiotic maturation in vitro decreased in the following order: estrus (75.5±2.3%), metestrus (67.9±3.4%), proestrus (57.8±4.4%), and diestrus (50.6±5.6%); the differences between estrus and diestrus/proestrus were significant (p<0.05). After eCG injections during estrus, GV oocytes differed from other oocytes by lesser total diameter, lesser diameter of cytoplasm, lesser thickness of zona pellucida, and moderately dilated perivitelline space. These signs reflected higher competence of the "estrous" GV oocytes for meiotic maturation in vitro. Hormone stimulation of females with eCG, with consideration for the stage of the estrous cycle, seems to be an effective method for improving the quality of GV oocytes isolated from mouse ovaries.
Collapse
Affiliation(s)
- Ya A Ryabukha
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - D A Petrova
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - O V Zatsepina
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|