1
|
Delivery of Therapeutic Agents to the Central Nervous System and the Promise of Extracellular Vesicles. Pharmaceutics 2021; 13:pharmaceutics13040492. [PMID: 33916841 PMCID: PMC8067091 DOI: 10.3390/pharmaceutics13040492] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022] Open
Abstract
The central nervous system (CNS) is surrounded by the blood–brain barrier (BBB), a semipermeable border of endothelial cells that prevents pathogens, solutes and most molecules from non-selectively crossing into the CNS. Thus, the BBB acts to protect the CNS from potentially deleterious insults. Unfortunately, the BBB also frequently presents a significant barrier to therapies, impeding passage of drugs and biologicals to target cells within the CNS. This review provides an overview of different approaches to deliver therapeutics across the BBB, with an emphasis in extracellular vesicles as delivery vehicles to the CNS.
Collapse
|
2
|
Rajani RM, Dupré N, Domenga-Denier V, Van Niel G, Heiligenstein X, Joutel A. Characterisation of early ultrastructural changes in the cerebral white matter of CADASIL small vessel disease using high-pressure freezing/freeze-substitution. Neuropathol Appl Neurobiol 2021; 47:694-704. [PMID: 33483954 DOI: 10.1111/nan.12697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
AIMS The objective of this study was to elucidate the early white matter changes in CADASIL small vessel disease. METHODS We used high-pressure freezing and freeze substitution (HPF/FS) in combination with high-resolution electron microscopy (EM), immunohistochemistry and confocal microscopy of brain specimens from control and CADASIL (TgNotch3R169C ) mice aged 4-15 months to study white matter lesions in the corpus callosum. RESULTS We first optimised the HPF/FS protocol in which samples were chemically prefixed, frozen in a sample carrier filled with 20% polyvinylpyrrolidone and freeze-substituted in a cocktail of tannic acid, osmium tetroxide and uranyl acetate dissolved in acetone. EM analysis showed that CADASIL mice exhibit significant splitting of myelin layers and enlargement of the inner tongue of small calibre axons from the age of 6 months, then vesiculation of the inner tongue and myelin sheath thinning at 15 months of age. Immunohistochemistry revealed an increased number of oligodendrocyte precursor cells, although only in older mice, but no reduction in the number of mature oligodendrocytes at any age. The number of Iba1 positive microglial cells was increased in older but not in younger CADASIL mice, but the number of activated microglial cells (Iba1 and CD68 positive) was unchanged at any age. CONCLUSION We conclude that early WM lesions in CADASIL affect first and foremost the myelin sheath and the inner tongue, suggestive of a primary myelin injury. We propose that those defects are consistent with a hypoxic/ischaemic mechanism.
Collapse
Affiliation(s)
- Rikesh M Rajani
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Nicolas Dupré
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Valérie Domenga-Denier
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France
| | - Guillaume Van Niel
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | | | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, Inserm U1266, Université de Paris, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.,Department of Pharmacology, College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
3
|
Lohrberg M, Winkler A, Franz J, van der Meer F, Ruhwedel T, Sirmpilatze N, Dadarwal R, Handwerker R, Esser D, Wiegand K, Hagel C, Gocht A, König FB, Boretius S, Möbius W, Stadelmann C, Barrantes-Freer A. Lack of astrocytes hinders parenchymal oligodendrocyte precursor cells from reaching a myelinating state in osmolyte-induced demyelination. Acta Neuropathol Commun 2020; 8:224. [PMID: 33357244 PMCID: PMC7761156 DOI: 10.1186/s40478-020-01105-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pontine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentiation. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myelinating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte numbers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further determine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.
Collapse
|
4
|
Imig C, López-Murcia FJ, Maus L, García-Plaza IH, Mortensen LS, Schwark M, Schwarze V, Angibaud J, Nägerl UV, Taschenberger H, Brose N, Cooper BH. Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. Neuron 2020; 108:843-860.e8. [PMID: 32991831 PMCID: PMC7736621 DOI: 10.1016/j.neuron.2020.09.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.
Collapse
Affiliation(s)
- Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| | - Francisco José López-Murcia
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Lydia Maus
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Georg August University School of Science, Georg August University Göttingen, 37073 Göttingen, Germany
| | - Inés Hojas García-Plaza
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, 37077 Göttingen, Germany
| | - Lena Sünke Mortensen
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Valentin Schwarze
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Julie Angibaud
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - U Valentin Nägerl
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" University of Göttingen, 37073 Göttingen, Germany.
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
| |
Collapse
|
5
|
Savage JC, Picard K, González-Ibáñez F, Tremblay MÈ. A Brief History of Microglial Ultrastructure: Distinctive Features, Phenotypes, and Functions Discovered Over the Past 60 Years by Electron Microscopy. Front Immunol 2018; 9:803. [PMID: 29922276 PMCID: PMC5996933 DOI: 10.3389/fimmu.2018.00803] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023] Open
Abstract
The first electron microscope was constructed in 1931. Several decades later, techniques were developed to allow the first ultrastructural analysis of microglia by transmission electron microscopy (EM). In the 50 years that followed, important roles of microglia have been identified, specifically due to the ultrastructural resolution currently available only with EM. In particular, the addition of electron-dense staining using immunohistochemical EM methods has allowed the identification of microglial cell bodies, as well as processes, which are difficult to recognize in EM, and to uncover their complex interactions with neurons and synapses. The ability to recognize neuronal, astrocytic, and oligodendrocytic compartments in the neuropil without any staining is another invaluable advantage of EM over light microscopy for studying intimate cell-cell contacts. The technique has been essential in defining microglial interactions with neurons and synapses, thus providing, among other discoveries, important insights into their roles in synaptic stripping and pruning via phagocytosis of extraneous synapses. Recent technological advances in EM including serial block-face imaging and focused-ion beam scanning EM have also facilitated automated acquisition of large tissue volumes required to reconstruct neuronal circuits in 3D at nanometer-resolution. These cutting-edge techniques which are now becoming increasingly available will further revolutionize the study of microglia across stages of the lifespan, brain regions, and contexts of health and disease. In this mini-review, we will focus on defining the distinctive ultrastructural features of microglia and the unique insights into their function that were provided by EM.
Collapse
Affiliation(s)
- Julie C. Savage
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Katherine Picard
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Fernando González-Ibáñez
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada
| |
Collapse
|