1
|
Ferreira AR, Ferreira M, Nunes C, Reis S, Teixeira C, Gomes P, Gameiro P. The Unusual Aggregation and Fusion Activity of the Antimicrobial Peptide W-BP100 in Anionic Vesicles. MEMBRANES 2023; 13:138. [PMID: 36837642 PMCID: PMC9966869 DOI: 10.3390/membranes13020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) offer a promising strategy to counteract bacterial resistance, mostly due to their membrane-targeting activity. W-BP100 is a potent broad-spectrum cecropin-melittin CAMP bearing a single N-terminal Trp, which was previously found to improve its antibacterial activity. W-BP100 has high affinity toward anionic membranes, inducing membrane saturation at low peptide-to-lipid (P/L) ratios and membrane permeabilization, with the unique property of promoting the aggregation of anionic vesicles only at specific P/L ratios. Herein, we aimed to investigate this unusual behavior of W-BP100 by studying its aggregation and fusion properties with negatively-charged large (LUVs) or giant (GUVs) unilamellar vesicles using biophysical tools. Circular dichroism (CD) showed that W-BP100 adopted an α-helical conformation in anionic LUVs, neutralizing its surface charge at the aggregation P/L ratio. Its fusion activity, assessed by Förster resonance energy transfer (FRET) using steady-state fluorescence spectroscopy, occurred mainly at the membrane saturation/aggregation P/L ratio. Confocal microscopy studies confirmed that W-BP100 displays aggregation and detergent-like effects at a critical P/L ratio, above which it induces the formation of new lipid aggregates. Our data suggest that W-BP100 promotes the aggregation and fusion of anionic vesicles at specific P/L ratios, being able to reshape the morphology of GUVs into new lipid structures.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Cláudia Nunes
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, Portugal, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cátia Teixeira
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV/REQUIMTE (Laboratório Associado para a Química Verde—Rede de Química e Tecnologia), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Development of an automated system to measure ion channel currents using a surface-modified gold probe. Sci Rep 2021; 11:17934. [PMID: 34504175 PMCID: PMC8429628 DOI: 10.1038/s41598-021-97237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/18/2021] [Indexed: 11/08/2022] Open
Abstract
Artificial lipid bilayer single-channel recording technique has been employed to determine the biophysical and pharmacological properties of various ion channels. However, its measurement efficiency is very low, as it requires two time-consuming processes: preparation of lipid bilayer membranes and incorporation of ion channels into the membranes. In order to address these problems, we previously developed a technique based on hydrophilically modified gold probes on which are immobilized ion channels that can be promptly incorporated into the bilayer membrane at the same time as the membrane is formed on the probes' hydrophilic area. Here, we improved further this technique by optimizing the gold probe and developed an automated channel current measurement system. We found that use of probes with rounded tips enhanced the efficiency of channel current measurements, and introducing a hydrophobic area on the probe surface, beside the hydrophilic one, further increased measurement efficiency by boosting membrane stability. Moreover, we developed an automated measurement system using the optimized probes; it enabled us to automatically measure channel currents and analyze the effects of a blocker on channel activity. Our study will contribute to the development of high-throughput devices to identify drug candidates affecting ion channel activity.
Collapse
|
3
|
Molbaek K, Tejada M, Ricke CH, Scharff-Poulsen P, Ellekvist P, Helix-Nielsen C, Kumar N, Klaerke DA, Pedersen PA. Purification and initial characterization of Plasmodium falciparum K + channels, PfKch1 and PfKch2 produced in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:183. [PMID: 32957994 PMCID: PMC7507820 DOI: 10.1186/s12934-020-01437-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance towards known antimalarial drugs poses a significant problem, urging for novel drugs that target vital proteins in the malaria parasite Plasmodium falciparum. However, recombinant production of malaria proteins is notoriously difficult. To address this, we have investigated two putative K+ channels, PfKch1 and PfKch2, identified in the P. falciparum genome. We show that PfKch1 and PfKch2 and a C-terminally truncated version of PfKch1 (PfKch11−1094) could indeed be functionally expressed in vivo, since a K+-uptake deficient Saccharomyces cerevisiae strain was complemented by the P. falciparum cDNAs. PfKch11−1094-GFP and GFP-PfKch2 fusion proteins were overexpressed in yeast, purified and reconstituted in lipid bilayers to determine their electrophysiological activity. Single channel conductance amounted to 16 ± 1 pS for PfKch11−1094-GFP and 28 ± 2 pS for GFP-PfKch2. We predicted regulator of K+-conductance (RCK) domains in the C-terminals of both channels, and we accordingly measured channel activity in the presence of Ca2+.
Collapse
Affiliation(s)
- Karen Molbaek
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.,Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Maria Tejada
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Christina Hoeier Ricke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Peter Scharff-Poulsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - Peter Ellekvist
- Medical Department, Herlev-Gentofte Hospital, Herlev, 2730, Denmark
| | - Claus Helix-Nielsen
- Aquaporin A/S, Kgs Lyngby, 2800, Denmark.,Department of Environmental Engineering, Technical University of Denmark, Kgs Lyngby, 2800, Denmark.,University of Maribor, Laboratory for Water Biophysics and Membrane Technology, Maribor, 2000, Slovenia
| | - Nirbhay Kumar
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington DC, 20052-0066, USA
| | - Dan A Klaerke
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.
| | | |
Collapse
|
4
|
Purification of Functional Human TRP Channels Recombinantly Produced in Yeast. Cells 2019; 8:cells8020148. [PMID: 30754715 PMCID: PMC6406451 DOI: 10.3390/cells8020148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 01/16/2023] Open
Abstract
(1) Background: Human transient receptor potential (TRP) channels constitute a large family of ion-conducting membrane proteins that allow the sensation of environmental cues. As the dysfunction of TRP channels contributes to the pathogenesis of many widespread diseases, including cardiac disorders, these proteins also represent important pharmacological targets. TRP channels are typically produced using expensive and laborious mammalian or insect cell-based systems. (2) Methods: We demonstrate an alternative platform exploiting the yeast Saccharomyces cerevisiae capable of delivering high yields of functional human TRP channels. We produce 11 full-length human TRP members originating from four different subfamilies, purify a selected subset of these to a high homogeneity and confirm retained functionality using TRPM8 as a model target. (3) Results: Our findings demonstrate the potential of the described production system for future functional, structural and pharmacological studies of human TRP channels.
Collapse
|