1
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Porfírio CTMN, Souza PFN, Ramos MV, Campos FAP, Freitas SF, Oliveira JPB, Furtado GP, Barbosa JSS, Frota TL, Nagano CS, Silva RGG, Hussain G, Freitas CDT. Serine carboxypeptidases from the carnivorous plant Nepenthes mirabilis: Partial characterization and heterologous expression. Int J Biol Macromol 2022; 198:77-86. [PMID: 34963626 DOI: 10.1016/j.ijbiomac.2021.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to partially characterize the three main serine carboxypeptidases (SCP3, SCP20, and SCP47) from Nepenthes mirabilis. Furthermore, one peptidase (SCP3) was chosen for further heterologous expression in Escherichia coli Shuffle®T7. SCP3 also was characterized in terms of its allergenic potential using bioinformatics tools. SCP3, SCP20, and SCP47 showed very similar 3D structures and mechanistic features to other plant serine peptidases belonging to clan SC and family S10. Although SCP3 was obtained in its soluble form, using 1% ethanol during induction with 0.5 mM IPTG at 16 °C for 18 h, it did not show proteolytic activity by zymography or in vitro analysis. SCP3 presented a few allergenic peptides and several cleavage sites for digestive enzymes. This work describes additional features of these enzymes, opening new perspectives for further studies for characterization and analysis of heterologous expression, as well as their potential biotechnological applications.
Collapse
Affiliation(s)
- Camila T M N Porfírio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Francisco A P Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Samuel F Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - João P B Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | | | - José S S Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Thalia L Frota
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rodolpho G G Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Ghulam Hussain
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| |
Collapse
|
3
|
A novel fungal metal-dependent α-L-arabinofuranosidase of family 54 glycoside hydrolase shows expanded substrate specificity. Sci Rep 2021; 11:10961. [PMID: 34040092 PMCID: PMC8155123 DOI: 10.1038/s41598-021-90490-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
Trichoderma genus fungi present great potential for the production of carbohydrate-active enzymes (CAZYmes), including glycoside hydrolase (GH) family members. From a renewability perspective, CAZYmes can be biotechnologically exploited to convert plant biomass into free sugars for the production of advanced biofuels and other high-value chemicals. GH54 is an attractive enzyme family for biotechnological applications because many GH54 enzymes are bifunctional. Thus, GH54 enzymes are interesting targets in the search for new enzymes for use in industrial processes such as plant biomass conversion. Herein, a novel metal-dependent GH54 arabinofuranosidase (ThABF) from the cellulolytic fungus Trichoderma harzianum was identified and biochemically characterized. Initial in silico searches were performed to identify the GH54 sequence. Next, the gene was cloned and heterologously overexpressed in Escherichia coli. The recombinant protein was purified, and the enzyme's biochemical and biophysical properties were assessed. GH54 members show wide functional diversity and specifically remove plant cell substitutions including arabinose and galactose in the presence of a metallic cofactor. Plant cell wall substitution has a major impact on lignocellulosic substrate conversion into high-value chemicals. These results expand the known functional diversity of the GH54 family, showing the potential of a novel arabinofuranosidase for plant biomass degradation.
Collapse
|
4
|
Michel LV, Gallardo L, Konovalova A, Bauer M, Jackson N, Zavorin M, McNamara C, Pierce J, Cheng S, Snyder E, Hellman J, Pichichero ME. Ampicillin triggers the release of Pal in toxic vesicles from Escherichia coli. Int J Antimicrob Agents 2020; 56:106163. [DOI: 10.1016/j.ijantimicag.2020.106163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 11/30/2022]
|