1
|
Tsan YC, DePalma SJ, Zhao YT, Capilnasiu A, Wu YW, Elder B, Panse I, Ufford K, Matera DL, Friedline S, O'Leary TS, Wubshet N, Ho KKY, Previs MJ, Nordsletten D, Isom LL, Baker BM, Liu AP, Helms AS. Physiologic biomechanics enhance reproducible contractile development in a stem cell derived cardiac muscle platform. Nat Commun 2021; 12:6167. [PMID: 34697315 PMCID: PMC8546060 DOI: 10.1038/s41467-021-26496-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) allow investigations in a human cardiac model system, but disorganized mechanics and immaturity of hPSC-CMs on standard two-dimensional surfaces have been hurdles. Here, we developed a platform of micron-scale cardiac muscle bundles to control biomechanics in arrays of thousands of purified, independently contracting cardiac muscle strips on two-dimensional elastomer substrates with far greater throughput than single cell methods. By defining geometry and workload in this reductionist platform, we show that myofibrillar alignment and auxotonic contractions at physiologic workload drive maturation of contractile function, calcium handling, and electrophysiology. Using transcriptomics, reporter hPSC-CMs, and quantitative immunofluorescence, these cardiac muscle bundles can be used to parse orthogonal cues in early development, including contractile force, calcium load, and metabolic signals. Additionally, the resultant organized biomechanics facilitates automated extraction of contractile kinetics from brightfield microscopy imaging, increasing the accessibility, reproducibility, and throughput of pharmacologic testing and cardiomyopathy disease modeling. Investigations of human cardiac disease involving human pluripotent stem cell-derived cardiomyocytes are limited by the disorganized presentation of biomechanical cues resulting in cell immaturity. Here the authors develop a platform of micron-scale 2D cardiac muscle bundles to precisely deliver physiologic cues, improving reproducibility and throughput.
Collapse
Affiliation(s)
- Yao-Chang Tsan
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yan-Ting Zhao
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Adela Capilnasiu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yu-Wei Wu
- Institute of Molecular Biology, Academia Sinica, NanKang, Taipei, Taiwan
| | - Brynn Elder
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Isabella Panse
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kathryn Ufford
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel L Matera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sabrina Friedline
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S O'Leary
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - Nadab Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Michael J Previs
- Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cardiovascular Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lori L Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Allen P Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Adam S Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Howe CL, Webb KF, Abayzeed SA, Anderson DJ, Denning C, Russell NA. Surface plasmon resonance imaging of excitable cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2019; 52:104001. [PMID: 30867618 PMCID: PMC6380809 DOI: 10.1088/1361-6463/aaf849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 05/27/2023]
Abstract
Surface plasmons (SPs) are surface charge density oscillations occuring at a metal/dieletric interface and are highly sensitive to refractive index variations adjacent to the surface. This sensitivity has been exploited successfully for chemical and biological assays. In these systems, a surface plasmon resonance (SPR)-based sensor detects temporal variations in the refractive index at a point. SPR has also been used in imaging systems where the spatial variations of refractive index in the sample provide the contrast mechanism. SPR imaging systems using high numerical aperture (NA) objective lenses have been designed to image adherent live cells with high magnification and near-diffraction limited spatial resolution. Addressing research questions in cell physiology and pharmacology often requires the development of a multimodal microscope where complementary information can be obtained. In this paper, we present the development of a multimodal microscope that combines SPR imaging with a number of additional imaging modalities including bright-field, epifluorescence, total internal reflection microscopy and SPR fluorescence microscopy. We used a high NA objective lens for SPR and TIR microscopy and the platform has been used to image live cell cultures demonstrating both fluorescent and label-free techniques. Both the SPR and TIR imaging systems feature a wide field of view (~300 µm) that allows measurements from multiple cells whilst maintaining a resolution sufficient to image fine cellular processes. The capability of the platform to perform label-free functional imaging of living cells was demonstrated by imaging the spatial variations in contractions from stem cell-derived cardiomyocytes. This technique shows promise for non-invasive imaging of cultured cells over very long periods of time during development.
Collapse
Affiliation(s)
- Carmel L Howe
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Kevin F Webb
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Sidahmed A Abayzeed
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - David J Anderson
- Empyrean Therapeutics Ltd, Building 250, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Noah A Russell
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|