1
|
Sakaguchi K, Naito T, Hoshikawa K, Miyadera Y, Tanaka H, Nakatsugawa E, Furuta T, Sugimoto K, Kawakami J. Characterization of plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders. Drug Metab Pharmacokinet 2024:101027. [PMID: 39428315 DOI: 10.1016/j.dmpk.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 10/22/2024]
Abstract
Factors that determine clinical responses to vonoprazan remain unknown. This study aimed to characterize plasma vonoprazan and CYP3A activity using its endogenous marker and genetic variants in patients with digestive system disorders. Fifty-three patients who were receiving vonoprazan for at least 3 days were enrolled. Blood samples for determination of plasma vonoprazan and its metabolite (ODA-VP) were obtained. Plasma 4β-hydroxycholesterol (4β-OHC), CYP3A5 and ABCB1 genotypes, and plasma gastrin were determined. CYP3A recognition for vonoprazan was evaluated using recombinant CYP3A proteins. Plasma vonoprazan levels exhibited a large interindividual variation. The absolute plasma concentration of vonoprazan was correlated with its dose-normalized value, and had a positive correlation with the inverse value of its metabolic ratio. A negative correlation was observed between plasma vonoprazan and 4β-OHC levels. The metabolic ratio of vonoprazan was positively correlated with the plasma 4β-OHC level. Genetic variants of CYP3A5 and ABCB1 were not associated with the plasma concentration of vonoprazan and its metabolic ratio. Possible saturated metabolism of vonoprazan to its major metabolite was observed at a therapeutic dose. Although the CYP3A5 genotype did not alter plasma vonoprazan, CYP3A activity based on plasma 4β-OHC partially explained the variation in plasma vonoprazan in patients with digestive system disorders.
Collapse
Affiliation(s)
- Kenta Sakaguchi
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Naito
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pharmacy, Shinshu University Hospital, Matsumoto, Nagano, Japan.
| | - Kohei Hoshikawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yukari Miyadera
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hironari Tanaka
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Emi Nakatsugawa
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahisa Furuta
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ken Sugimoto
- First Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junichi Kawakami
- Department of Hospital Pharmacy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
2
|
Li S, Xie L, Yang L, Jiang L, Yang Y, Zhi H, Liu X, Yang H, Liu L. Prediction of Omeprazole Pharmacokinetics and its Inhibition on Gastric Acid Secretion in Humans Using Physiologically Based Pharmacokinetic-Pharmacodynamic Model Characterizing CYP2C19 Polymorphisms. Pharm Res 2023; 40:1735-1750. [PMID: 37226024 DOI: 10.1007/s11095-023-03531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE To develop a whole physiologically based pharmacokinetic-pharmacodynamic (PBPK-PD) model to describe the pharmacokinetics and anti-gastric acid secretion of omeprazole in CYP2C19 extensive metabolizers (EMs), intermediate metabolizers (IMs), poor metabolizers (PMs) and ultrarapid metabolizers (UMs) following oral or intravenous administration. METHODS A PBPK/PD model was built using Phoenix WinNolin software. Omeprazole was mainly metabolized by CYP2C19 and CYP3A4 and the CYP2C19 polymorphism was incorporated using in vitro data. We described the PD by using a turn-over model with parameter estimates from dogs and the effect of a meal on the acid secretion was also implemented. The model predictions were compared to 53 sets of clinical data. RESULTS Predictions of omeprazole plasma concentration (72.2%) and 24 h stomach pH after administration (85%) were within 0.5-2.0-fold of the observed values, indicating that the PBPK-PD model was successfully developed. Sensitivity analysis demonstrated that the contributions of the tested factors to the plasma concentration of omeprazole were Vmax,2C19 ≈ Papp > Vmax,3A4 > Kti, and contributions to its pharmacodynamic were Vmax,2C19 > kome > kms > Papp > Vmax,3A4. The simulations showed that while the initial omeprazole dose in UMs, EMs, and IMs increased 7.5-, 3- and 1.25-fold compared to those of PMs, the therapeutic effect was similar. CONCLUSIONS The successful establishment of this PBPK-PD model highlights that pharmacokinetic and pharmacodynamic profiles of drugs can be predicted using preclinical data. The PBPK-PD model also provided a feasible alternative to empirical guidance for the recommended doses of omeprazole.
Collapse
Affiliation(s)
- Shuai Li
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Xie
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling Jiang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiting Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhi
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
3
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Ren HC, Sai Y, Chen T, Zhang C, Tang L, Yang CG. Predicting the Drug-Drug Interaction Mediated by CYP3A4 Inhibition: Method Development and Performance Evaluation. AAPS J 2021; 24:12. [PMID: 34893925 DOI: 10.1208/s12248-021-00659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The prediction of drug-drug interactions (DDIs) plays critical roles for the estimation of DDI risk caused by inhibition of CYP3A4. The aim of this paper is to develop a physiologically based pharmacokinetic (PBPK)-DDI model for prediction of the DDI co-administrated with ketoconazole in humans and evaluate the predictive performance of the model. The pharmacokinetic and biopharmaceutical properties of 35 approved drugs, as victims, were collected for the development of a PBPK model, which were linked to the PBPK model of ketoconazole for the DDI prediction. The PBPK model of victims and ketoconazole were validated by matching actual in vivo pharmacokinetic data. The predicted results of DDI were compared with actual data to evaluate the predictive performance. The percentage of predicted ratio of AUC (AUCR), Cmax (CmaxR), and Tmax (TmaxR) was 75%, 69%, and 91%, respectively, which were within the twofold threshold (range, 0.5-2.0×) of the observed values. Only 3% of the predicted AUCRs are obviously underestimated. After integration of the reported fraction of metabolism (fm) into the PBPK-DDI model for limited four cases, the model-predicted AUCRs were improved from the twofold range of the observed AUCRs to the 90% confidence interval. The developed method could reasonably predict drug-drug interaction with a low risk of underestimation. The present accuracy of the prediction was improved compared with that of static mechanistic models. The evaluation of predictive performance increases the confidence using the model to evaluate the risk of DDIs co-administrated with ketoconazole before the in vivo DDI study.
Collapse
Affiliation(s)
- Hong-Can Ren
- Department of Clinical Pharmacology and DMPK, Hutchison MediPharma Ltd., Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai, 201203, China. .,Department of Biology, GenFleet Therapeutics (Shanghai) Inc., 1206 Zhangjiang Road, Suite A, Shanghai, China.
| | - Yang Sai
- Department of Clinical Pharmacology and DMPK, Hutchison MediPharma Ltd., Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai, 201203, China.
| | - Tao Chen
- Shanghai PharmoGo Co., Ltd., 3F, Block B, Weitai Building, No. 58, Lane 91, Shanghai, 200127, People's Republic of China
| | - Chun Zhang
- Department of Clinical Pharmacology and DMPK, Hutchison MediPharma Ltd., Building 4, 720 Cailun Road, Zhang-Jiang Hi-Tech Park, Shanghai, 201203, China
| | - Lily Tang
- Department of Biology, GenFleet Therapeutics (Shanghai) Inc., 1206 Zhangjiang Road, Suite A, Shanghai, China
| | - Cheng-Guang Yang
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| |
Collapse
|
5
|
Extrapolation of physiologically based pharmacokinetic model for tacrolimus from renal to liver transplant patients. Drug Metab Pharmacokinet 2021; 42:100423. [PMID: 34896748 DOI: 10.1016/j.dmpk.2021.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is useful for evaluating differences in drug exposure among special populations, but it has not yet been employed to evaluate the absorption process of tacrolimus. In this study, we developed a minimal PBPK model with a compartmental absorption and transit model for renal transplant patients using available data in the literature and clinical data from our hospital. The effective permeability value of tacrolimus absorption and parameters for the single adjusting compartment were optimized via sensitivity analyses, generating a PBPK model of tacrolimus for renal transplant patients with good predictability. Next, we extrapolated the pharmacokinetics of tacrolimus for liver transplant patients by changing the population demographic parameters of the model. When the physiological parameters of a population with normal liver function were changed to those of a population with impaired hepatic function (Child-Pugh class A) in the constructed renal transplant PBPK model, the predicted tacrolimus concentrations were consistent with the observed concentrations in liver transplant patients. In conclusion, the constructed tacrolimus PBPK model for renal transplant patients could predict the pharmacokinetics in liver transplant patients by slightly reducing the hepatic function, even at three weeks post-transplantation.
Collapse
|
6
|
An XX, Yu Y, Li GF, Yu G. Abundance and Associated Variations of Cytochrome P450 Drug-Metabolizing Enzymes in the Liver of East Asian Adults: A Meta-Analysis. Eur J Drug Metab Pharmacokinet 2020; 46:225-233. [PMID: 33368014 DOI: 10.1007/s13318-020-00667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cytochrome P450 (CYP) enzymes are one of the main sources of variability in drug metabolic clearance. Information on their abundance levels is therefore crucial to optimize scaling factors for in vitro-in vivo extrapolation (IVIVE) to predict metabolic clearance. OBJECTIVE This study aims to quantify the abundance data of hepatic drug-metabolizing CYP enzymes in East Asian subjects reported from various sources in the literature using meta-analysis. METHOD We conducted a meta-analysis on the abundance of drug-metabolizing CYP enzymes in the liver of East Asian adults. Eligible reports were identified based on predefined criteria-(1) individual liver microsomal samples, and (2) absolute protein abundance data from normal tissues of East Asian adult subjects. Subgroup and sensitivity analyses were also performed. RESULTS Among the 11 CYP isoforms analyzed in East Asian subjects, CYP3A5 and CYP3A4 had the highest protein levels. In particular, the number of studies and the liver sample used to quantify the abundance of CYP3A4 were the largest. Of the isoforms involved, CYP2J2 and CYP2B6 had the lowest abundance level, i.e., <5 pmol/ mg of microsomal protein. For enzymes with abundance values available in both Chinese and Japanese subjects (CYP1A2, CYP2C9, CYP3A4, and CYP3A5), the abundance level of each CYP isoform appeared to be higher in Chinese than in Japanese subjects. The most distinct difference was observed in CYP3A5 abundance. CONCLUSION The current meta-analysis shows that the abundance levels of CYP enzymes appear to vary greatly among different East Asian individuals who have similar ethnic backgrounds and food habits. The pooled data of CYP abundance can be used as preliminary reference values along with the associated variations for the projections of pharmacokinetics through physiologically based pharmacokinetic (PBPK) approaches.
Collapse
Affiliation(s)
- Xiao-Xiao An
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yichao Yu
- Department of Pharmaceutics, University of Florida, Gainesville, FL, 32608, USA
| | - Guo-Fu Li
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China
| | - Guo Yu
- Clinical Medical College, Yangzhou University, Yangzhou, China. .,Institution of Drug Clinical Trial, Subei People's Hospital, Yangzhou, China.
| |
Collapse
|
7
|
Banerjee P, Dunkel M, Kemmler E, Preissner R. SuperCYPsPred-a web server for the prediction of cytochrome activity. Nucleic Acids Res 2020; 48:W580-W585. [PMID: 32182358 PMCID: PMC7319455 DOI: 10.1093/nar/gkaa166] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/26/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs)-mediated drug metabolism influences drug pharmacokinetics and results in adverse outcomes in patients through drug–drug interactions (DDIs). Absorption, distribution, metabolism, excretion and toxicity (ADMET) issues are the leading causes for the failure of a drug in the clinical trials. As details on their metabolism are known for just half of the approved drugs, a tool for reliable prediction of CYPs specificity is needed. The SuperCYPsPred web server is currently focused on five major CYPs isoenzymes, which includes CYP1A2, CYP2C19, CYP2D6, CYP2C9 and CYP3A4 that are responsible for more than 80% of the metabolism of clinical drugs. The prediction models for classification of the CYPs inhibition are based on well-established machine learning methods. The models were validated both on cross-validation and external validation sets and achieved good performance. The web server takes a 2D chemical structure as input and reports the CYP inhibition profile of the chemical for 10 models using different molecular fingerprints, along with confidence scores, similar compounds, known CYPs information of drugs—published in literature, detailed interaction profile of individual cytochromes including a DDIs table and an overall CYPs prediction radar chart (http://insilico-cyp.charite.de/SuperCYPsPred/). The web server does not require log in or registration and is free to use.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Structural Bioinformatics Group, Institute for Physiology & ECRC, Charité, University Medicine Berlin, 10115 Berlin, Germany
| | - Mathias Dunkel
- Structural Bioinformatics Group, Institute for Physiology & ECRC, Charité, University Medicine Berlin, 10115 Berlin, Germany
| | - Emanuel Kemmler
- Structural Bioinformatics Group, Institute for Physiology & ECRC, Charité, University Medicine Berlin, 10115 Berlin, Germany
| | - Robert Preissner
- Structural Bioinformatics Group, Institute for Physiology & ECRC, Charité, University Medicine Berlin, 10115 Berlin, Germany
| |
Collapse
|
8
|
Sachar M, Park CH, Pesco‐Koplowitz L, Koplowitz B, McGinn A. Absence of ethnic difference on single‐dose pharmacokinetics of rivoceranib between healthy male Caucasian, Japanese, and Chinese subjects. Fundam Clin Pharmacol 2020; 35:485-495. [DOI: 10.1111/fcp.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | | | - Arlo McGinn
- Elevar Therapeutics, Inc. Salt Lake City UT USA
| |
Collapse
|
9
|
Hakkola J, Hukkanen J, Turpeinen M, Pelkonen O. Inhibition and induction of CYP enzymes in humans: an update. Arch Toxicol 2020; 94:3671-3722. [PMID: 33111191 PMCID: PMC7603454 DOI: 10.1007/s00204-020-02936-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
The cytochrome P450 (CYP) enzyme family is the most important enzyme system catalyzing the phase 1 metabolism of pharmaceuticals and other xenobiotics such as herbal remedies and toxic compounds in the environment. The inhibition and induction of CYPs are major mechanisms causing pharmacokinetic drug–drug interactions. This review presents a comprehensive update on the inhibitors and inducers of the specific CYP enzymes in humans. The focus is on the more recent human in vitro and in vivo findings since the publication of our previous review on this topic in 2008. In addition to the general presentation of inhibitory drugs and inducers of human CYP enzymes by drugs, herbal remedies, and toxic compounds, an in-depth view on tyrosine-kinase inhibitors and antiretroviral HIV medications as victims and perpetrators of drug–drug interactions is provided as examples of the current trends in the field. Also, a concise overview of the mechanisms of CYP induction is presented to aid the understanding of the induction phenomena.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Janne Hukkanen
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miia Turpeinen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.,Administration Center, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Olavi Pelkonen
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, POB 5000, 90014, Oulu, Finland.
| |
Collapse
|
10
|
Posada MM, Morse BL, Turner PK, Kulanthaivel P, Hall SD, Dickinson GL. Predicting Clinical Effects of CYP3A4 Modulators on Abemaciclib and Active Metabolites Exposure Using Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2020; 60:915-930. [PMID: 32080863 PMCID: PMC7318171 DOI: 10.1002/jcph.1584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/01/2020] [Indexed: 11/09/2022]
Abstract
Abemaciclib, a selective inhibitor of cyclin‐dependent kinases 4 and 6, is metabolized mainly by cytochrome P450 (CYP)3A4. Clinical studies were performed to assess the impact of strong inhibitor (clarithromycin) and inducer (rifampin) on the exposure of abemaciclib and active metabolites. A physiologically based pharmacokinetic (PBPK) model incorporating the metabolites was developed to predict the effect of other strong and moderate CYP3A4 inhibitors and inducers. Clarithromycin increased the area under the plasma concentration‐time curve (AUC) of abemaciclib and potency‐adjusted unbound active species 3.4‐fold and 2.5‐fold, respectively. Rifampin decreased corresponding exposures 95% and 77%, respectively. These changes influenced the fraction metabolized via CYP3A4 in the model. An absolute bioavailability study informed the hepatic and gastric availability. In vitro data and a human radiolabel study determined the fraction and rate of formation of the active metabolites as well as absorption‐related parameters. The predicted AUC ratios of potency‐adjusted unbound active species with rifampin and clarithromycin were within 0.7‐ and 1.25‐fold of those observed. The PBPK model predicted 3.78‐ and 7.15‐fold increases in the AUC of the potency‐adjusted unbound active species with strong CYP3A4 inhibitors itraconazole and ketoconazole, respectively; and 1.62‐ and 2.37‐fold increases with the concomitant use of moderate CYP3A4 inhibitors verapamil and diltiazem, respectively. The model predicted modafinil, bosentan, and efavirenz would decrease the AUC of the potency‐adjusted unbound active species by 29%, 42%, and 52%, respectively. The current PBPK model, which considers changes in unbound potency‐adjusted active species, can be used to inform dosing recommendations when abemaciclib is coadministered with CYP3A4 perpetrators.
Collapse
|