1
|
Gkaragkounis A, Chachlioutaki K, Katsamenis OL, Alvarez-Borges F, Koltsakidis S, Partheniadis I, Bouropoulos N, Vizirianakis IS, Tzetzis D, Nikolakakis I, Verhoeven CHJ, Fatouros DG, van Bommel KJC. Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering. ACS Biomater Sci Eng 2025; 11:1818-1833. [PMID: 39912506 DOI: 10.1021/acsbiomaterials.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Additive manufacturing has been a breakthrough therapy for the pharmaceutical industry raising opportunities for long-quested properties, such as controlled drug-delivery. The aim of this study was to explore the geometrical capabilities of selective laser sintering (SLS) by creating spiked (tapered-edged) drug-loaded specimens for administration in colon. Poly(vinyl alcohol) (PVA) was used as the binding material and loperamide hydrochloride was incorporated as the active ingredient. Printing was feasible without the addition of a sintering agent or other additives. Innovative printing protocols were developed to help improve the quality of the obtained products. Intentional vibrations were applied on the powder bed through rapid movements of the printing platform in order to facilitate rigidity and consistency of the printed objects. The drug-loaded products had physicochemical properties that met the pharmacopoeia standards and exhibited good biocompatibility. The behavior of spiked balls (spherical objects with prominent spikes) and their retention time in the colon was assessed using a custom ex vivo intestinal setup. The spiked balls showed favorable mucoadhesive properties over the unspiked ones. No movement on the tissue was recorded for the spiked balls, and specimens with more spikes exhibited longer retention times and potentially, enhanced bioavailability. Our results suggest that SLS 3D printing is a versatile technology that holds the potential to revolutionize drug delivery systems by enabling the creation of complex geometries and medications with tunable properties.
Collapse
Affiliation(s)
- Angelos Gkaragkounis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- The Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Konstantina Chachlioutaki
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Orestis L Katsamenis
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
- Institute for Life Sciences, University of Southampton, University Road, Highfield, Southampton SO17 1BJ, U.K
| | - Fernando Alvarez-Borges
- μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Partheniadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras 26504, Rio, Greece
- Institute of Chemical Engineering and High Temperature Chemical Processes, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Ioannis Nikolakakis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
| | - Chris H J Verhoeven
- The Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 54124, Greece
| | - Kjeld J C van Bommel
- The Netherlands Organization for Applied Scientific Research (TNO), Eindhoven 5656 AE, The Netherlands
| |
Collapse
|
2
|
Ayyoubi S, Ruijgrok L, van der Kuy H, Ten Ham R, Thielen F. What Does Pharmaceutical 3D Printing Cost? A Framework and Case Study with Hydrocortisone for Adrenal Insufficiency. PHARMACOECONOMICS - OPEN 2025; 9:207-215. [PMID: 39739242 DOI: 10.1007/s41669-024-00551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Pharmaceutical three-dimensional printing (3DP) technology offers an automated platform that can be utilized to manufacture personalized medicine, improving pharmacotherapy. Although 3D-printed products have entered clinical trials, no costing studies have been performed yet. Cost insights can aid researchers and industry in making informed decisions about the feasibility and scalability of 3DP. OBJECTIVE The aim of this research was therefore to develop a framework that can be utilized to estimate the manufacturing cost of one 3D tablet in a hospital pharmacy setting. METHODS To develop the costing framework, general manufacturing phases were identified, consisting of (i) pre-printing, (ii) printing, and (iii) post-printing. For each phase, cost categories were defined, including personnel, materials, equipment, facility, and quality assurance. The three phases combined with the categories formed the base of the costing framework. An earlier developed 3D-printed hydrocortisone formulation (M3DICORT) was used as a case study. Costs were expressed in 2022 euros (€). The framework was applied to M3DICORT in four scenarios: a base case scenario, worst-case scenario, best-case scenario, and a scaling scenario. In the scaling scenario, we assumed that 3D inks were mass produced. RESULTS Costs of manufacturing a single M3DICORT tablet were €1.97-3.11 (best-case-worst-case) and €1.58-2.26 for the scaling scenario. CONCLUSION Manufacturing costs of 3D-printed pharmaceuticals were thus far unknown. The framework is translated into an open-access costing tool to facilitate adoption by other parties, and is also applicable for other pharmaceutical 3DP techniques.
Collapse
Affiliation(s)
- Sejad Ayyoubi
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands.
| | - Liesbeth Ruijgrok
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands
| | - Hugo van der Kuy
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, Room Number: na-219, 3015 GD, Rotterdam, The Netherlands
| | - Renske Ten Ham
- Department of Epidemiology & Health Economics, Julius Center, University Medical Center Utrecht, Universiteitsweg 100, 3584 CX, Utrecht, The Netherlands
| | - Frederick Thielen
- Erasmus School of Health Policy & Management (ESHPM) & Erasmus Centre for Health Economics Rotterdam (EsCHER), Erasmus University Rotterdam, Burgemeester Oudlaan 50, 3062 PA, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Auel T, Mentrup AFC, Oldfield LR, Seidlitz A. 3D printing of pharmaceutical dosage forms: Recent advances and applications. Adv Drug Deliv Rev 2025; 217:115504. [PMID: 39706526 DOI: 10.1016/j.addr.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Three-dimensional (3D) printing, also referred to as additive manufacturing, is considered to be a game-changing technology in many industries and is also considered to have potential use cases in pharmaceutical manufacturing, especially if individualization is desired. In this review article the authors systematically researched literature published during the last 5 years (2019 - spring 2024) on the topic of 3D printed dosage forms. Besides all kinds of oral dosage forms ranging from tablets and capsules to films, pellets, etc., numerous reports were also identified on parenteral and cutaneous dosage forms and also rectal, vaginal, dental, intravesical, and ophthalmic preparations. In total, more than 500 publications were identified and grouped according to the site of administration, and an overview of the manuscripts is presented here. Furthermore, selected publications are described and discussed in more detail. The review highlights the very different approaches that are currently used in order to develop 3D printed dosage forms but also addresses remaining challenges.
Collapse
Affiliation(s)
- Tobias Auel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Aaron Felix Christofer Mentrup
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Otto-Bayer-Straße 32, 51061 Köln, Germany
| | - Lee Roy Oldfield
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Anne Seidlitz
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Düsseldorf, Germany; Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical Technology, Kelchstraße 31, 12169 Berlin, Germany.
| |
Collapse
|
4
|
Mora-Castaño G, Rodríguez-Pombo L, Carou-Senra P, Januskaite P, Rial C, Bendicho-Lavilla C, Couce ML, Millán-Jiménez M, Caraballo I, Basit AW, Alvarez-Lorenzo C, Goyanes A. Optimising 3D printed medications for rare diseases: In-line mass uniformity testing in direct powder extrusion 3D printing. Int J Pharm 2025; 668:124964. [PMID: 39557179 DOI: 10.1016/j.ijpharm.2024.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Biotinidase deficiency is a rare inherited disorder characterized by biotin metabolism issues, leading to neurological and cutaneous symptoms that can be alleviated through biotin administration. Three-dimensional (3D) printing (3DP) offers potential for personalized medicine production for rare diseases, due to its flexibility in designing dosage forms and controlling release profiles. For such point-of-care applications, rigorous quality control (QC) measures are essential to ensure precise dosing, optimal performance, and product safety, especially for low personalized doses in preclinical and clinical studies. In this work, we addressed QC challenges by integrating a precision balance into a direct powder extrusion pharmaceutical 3D printer (M3DIMAKER™) for real-time, in-line mass uniformity testing, a critical quality control step. Small and large capsule-shaped biotin printlets (3D printed tablets) for immediate- and extended-release were printed. The integrated balance monitored and registered each printlet's weight, identifying any deviations from acceptable limits. While all large printlet batches met mass uniformity criteria, some small printlet batches exhibited weight deviations. In vitro release studies showed large immediate-release printlets releasing 82% of biotin within 45 min, compared to 100% for small immediate-release printlets. For extended-release formulations, 35% of the drug was released from small printlets, whereas 24% was released from large printlets at the same time point. The integration of process analytical technology tools in 3DP shows promise in enhancing QC and scalability of personalized dosing at the point-of-care, demonstrating successful integration of a balance into a direct powder extrusion 3D printer for in-line mass uniformity testing across different sizes of capsule-shaped printlets.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Carlos Rial
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Carlos Bendicho-Lavilla
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, Seville 41012, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, United Kingdom; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos, O Saviñao CP 27543, Spain.
| |
Collapse
|
5
|
Rodríguez-Pombo L, Gallego-Fernández C, Jørgensen AK, Parramon-Teixidó CJ, Cañete-Ramirez C, Cabañas-Poy MJ, Basit AW, Alvarez-Lorenzo C, Goyanes A. 3D printed personalized therapies for pediatric patients affected by adrenal insufficiency. Expert Opin Drug Deliv 2024; 21:1665-1681. [PMID: 39268761 DOI: 10.1080/17425247.2024.2399706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Adrenal insufficiency is usually diagnosed in children who will need lifelong hydrocortisone therapy. However, medicines for pediatrics, in terms of dosage and acceptability, are currently unavailable. RESEARCH DESIGN AND METHODS Semi-solid extrusion (SSE) 3D printing (3DP) was utilized for manufacturing of personalized and chewable hydrocortisone formulations (printlets) for an upcoming clinical study in children at Vall d'Hebron University Hospital in Barcelona, Spain. The 3DP process was validated using a specific software for dynamic dose modulation. RESULTS The printlets contained doses ranging from 1 to 6 mg hydrocortisone in three different flavor and color combinations to aid adherence among the pediatric patients. The pharma-ink (mixture of drugs and excipients) was assessed for its rheological behavior to ensure reproducibility of printlets through repeated printing cycles. The printlets showed immediate hydrocortisone release and were stable for 1 month of storage, adequate for prescribing instructions during the clinical trial. CONCLUSIONS The results confirm the suitability and safety of the developed printlets for use in the clinical trial. The required technical information from The Spanish Medicines Agency for this clinical trial application was compiled to serve as guidelines for healthcare professionals seeking to apply for and conduct clinical trials on 3DP oral dosage forms.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción Gallego-Fernández
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | - Carme Cañete-Ramirez
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Josep Cabañas-Poy
- Pharmacy Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, London, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, UK
- FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), Spain
| |
Collapse
|
6
|
Paccione N, Guarnizo-Herrero V, Ramalingam M, Larrarte E, Pedraz JL. Application of 3D printing on the design and development of pharmaceutical oral dosage forms. J Control Release 2024; 373:463-480. [PMID: 39029877 DOI: 10.1016/j.jconrel.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
3D printing technologies confer an unparalleled degree of control over the material distribution on the structures they produce, which has led them to become an extremely attractive research topic in pharmaceutical dosage form development, especially for the design of personalized treatments. With fine tuning in material selection and careful design, these technologies allow to tailor not only the amount of drug administered but the biopharmaceutical behaviour of the dosage forms as well. While fused deposition modelling (FDM) is still the most studied 3D printing technology in this area, others are gaining more relevance, which has led to many new and exciting dosage forms developed during 2022 and 2023. Considering that these technologies, in time, will join the current manufacturing methods and with the ever-increasing knowledge on this topic, our review aims to explore the advantages and limitations of 3D printing technologies employed in the design and development of pharmaceutical oral dosage forms, giving special focus to the most important aspects governing the resulting drug release profiles.
Collapse
Affiliation(s)
- Nicola Paccione
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain
| | - Víctor Guarnizo-Herrero
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33, 600 28805 Madrid, Spain
| | - Murugan Ramalingam
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain; School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Eider Larrarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Leonardo Da Vinci 11, 01510 Miñano, Spain; Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain.
| | - José Luis Pedraz
- Joint Research Laboratory (JRL) on Advanced Pharma Development, A Joint Venture of TECNALIA and University of the Basque Country, Centro de investigación Lascaray ikergunea, 01006 Vitoria-Gasteiz, Spain; NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006 Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain..
| |
Collapse
|
7
|
Sun W, Rantanen J, Genina N. Lessons to Learn for 3D Printing of Drug Products by Semisolid Extrusion (SSE). J Pharm Sci 2024; 113:2957-2966. [PMID: 38852672 DOI: 10.1016/j.xphs.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Semisolid extrusion (SSE) 3D printing (3DP) technology is emerging due to its simplicity and potential for on-site manufacturing of personalized drug products with tailored functionality (dose, release profile), as well as recognizability (size, shape, color). However, even a minor change in the composition of the ink (the feedstock material) and the printing process parameters can largely influence the outcome of printing. This paper summarizes the recent SSE 3DP studies, where the important factors affecting the quality of the printed drug products are discussed. Further challenges are showcased by introducing a case study focusing on the design of oral theophylline immediate-release drug products. The identified crucial factors, such as the printing hardware and connected software, printing parameters, and composition of the ink are discussed. Especially, the rheological properties of the ink during the printing process, together with solidification, mechanical properties, and morphology studies of already printed products are deliberated to gain more understanding of the printability of drug products by SSE. This work aims to provide an overview of design aspects related to SSE-based fabrication of personalized drug products.
Collapse
Affiliation(s)
- Weining Sun
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Natalja Genina
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Denis L, Jørgensen AK, Do B, Vaz-Luis I, Pistilli B, Rieutord A, Basit AW, Goyanes A, Annereau M. Developing an innovative 3D printing platform for production of personalised medicines in a hospital for the OPERA clinical trial. Int J Pharm 2024; 661:124306. [PMID: 38871137 DOI: 10.1016/j.ijpharm.2024.124306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Breast cancer is the most frequently diagnosed cancer in women worldwide, and non-adherence to adjuvant hormonotherapy can negatively impact cancer recurrence and relapse. Non-adherence is associated with side effects of hormonotherapy. Pharmacological strategies to mitigate the side effects include coadministration of antidepressants, however patients remain non-adherent. The aim of this work was to develop medicines containing both hormonotherapy, tamoxifen (20 mg), along with anti-depressants, either venlafaxine (37.5 or 75 mg) or duloxetine (30 or 60 mg), to assess the acceptability and efficacy of this personalised approach for mitigating tamoxifen side effects in a clinical trial. A major criterion for the developed medicines was the production rate, specified at minimum 200 dosage units per hour to produce more than 40,000 units required for the clinical trial. A novel capsule filling approach enabled by the pharmaceutical 3D printer M3DIMAKER 2 was developed for this purpose. Firstly, semi-solid extrusion 3D printing enabled the filling of tamoxifen pharma-ink prepared according to French compounding regulation, followed by filling of commercial venlafaxine or duloxetine pellets enabled by the development of an innovative pellet dispensing printhead. The medicines were successfully developed and produced in the clinical pharmacy department of the cancer hospital Gustave Roussy, located in Paris, France. The developed medicines satisfied quality and production rate requirements and were stable for storage up to one year to cover the duration of the trial. This work demonstrates the feasibility of developing and producing combined tamoxifen medicines in a hospital setting through a pharmaceutical 3D printer to enable a clinical trial with a high medicines production rate requirement.
Collapse
Affiliation(s)
- Lucas Denis
- Department of Clinical Pharmacy, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant 94800 Villejuif, France
| | - Anna Kirstine Jørgensen
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Bernard Do
- Department of Clinical Pharmacy, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant 94800 Villejuif, France; Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Inès Vaz-Luis
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Department for the Organization of Patient Pathways (DIOPP), Gustave Roussy, France; Unit INSERM 981 - Gustave Roussy, Villejuif, France
| | - Barbara Pistilli
- Department of Medical Oncology, Gustave Roussy, Villejuif, France; Unit INSERM 1279, Gustave Roussy, Villejuif, France
| | - André Rieutord
- Department of Clinical Pharmacy, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant 94800 Villejuif, France
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maxime Annereau
- Department of Clinical Pharmacy, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant 94800 Villejuif, France; Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France.
| |
Collapse
|
9
|
Rodríguez-Pombo L, de Castro-López MJ, Sánchez-Pintos P, Giraldez-Montero JM, Januskaite P, Duran-Piñeiro G, Dolores Bóveda M, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. Paediatric clinical study of 3D printed personalised medicines for rare metabolic disorders. Int J Pharm 2024; 657:124140. [PMID: 38643809 DOI: 10.1016/j.ijpharm.2024.124140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Rare diseases are infrequent, but together they affect up to 6-10 % of the world's population, mainly children. Patients require precise doses and strict adherence to avoid metabolic or cardiac failure in some cases, which cannot be addressed in a reliable way using pharmaceutical compounding. 3D printing (3DP) is a disruptive technology that allows the real-time personalization of the dose and the modulation of the dosage form to adapt the medicine to the therapeutic needs of each patient. 3D printed chewable medicines containing amino acids (citrulline, isoleucine, valine, and isoleucine and valine combinations) were prepared in a hospital setting, and the efficacy and acceptability were evaluated in comparison to conventional compounded medicines in six children. The inclusion of new flavours (lemon, vanilla and peach) to obtain more information on patient preferences and the implementation of a mobile app to obtain patient feedback in real-time was also used. The 3D printed medicines controlled amino acid levels within target levels as well as the conventional medicines. The deviation of citrulline levels was narrower and closer within the target concentration with the chewable formulations. According to participants' responses, the chewable formulations were well accepted and can improve adherence and quality of life. For the first time, 3DP enabled two actives to be combined in the same formulation, reducing the number of administrations. This study demonstrated the benefits of preparing 3D printed personalized treatments for children diagnosed with rare metabolic disorders using a novel technology in real clinical practice.
Collapse
Affiliation(s)
- Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María José de Castro-López
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Paula Sánchez-Pintos
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Jose Maria Giraldez-Montero
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Goretti Duran-Piñeiro
- Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Travesía Choupana s/n, Santiago de Compostela 15706, Spain
| | - M Dolores Bóveda
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao), CP 27543, Spain.
| | - Maria L Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, IDIS, RICORS, CIBERER, MetabERN, Spain.
| |
Collapse
|
10
|
Sandler Topelius N, Shokraneh F, Bahman M, Lahtinen J, Hassinen N, Airaksinen S, Verma S, Hrizanovska L, Lass J, Paaver U, Tähnas J, Kern C, Lagarce F, Fenske D, Malik J, Scherliess H, Cruz SP, Paulsson M, Dekker J, Kammonen K, Rautamo M, Lück H, Pierrot A, Stareprawo S, Tubic-Grozdanis M, Zibolka S, Lösch U, Jeske M, Griesser U, Hummer K, Thalmeier A, Harjans A, Kruse A, Heimke-Brinck R, Khoukh K, Bruno F. Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets. Pharmaceutics 2024; 16:678. [PMID: 38794340 PMCID: PMC11125381 DOI: 10.3390/pharmaceutics16050678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Pharmacy compounding, the art and science of preparing customized medications to meet individual patient needs, is on the verge of transformation. Traditional methods of compounding often involve manual and time-consuming processes, presenting challenges in terms of consistency, dosage accuracy, quality control, contamination, and scalability. However, the emergence of cutting-edge technologies has paved a way for a new era for pharmacy compounding, promising to redefine the way medications are prepared and delivered as pharmacy-tailored personalized medicines. In this multi-site study, more than 30 hospitals and community pharmacies from eight countries in Europe utilized a novel automated dosing approach inspired by 3D printing for the compounding of non-sterile propranolol hydrochloride tablets. CuraBlend® excipient base, a GMP-manufactured excipient base (pharma-ink) intended for automated compounding applications, was used. A standardized study protocol to test the automated dosing of tablets with variable weights was performed in all participating pharmacies in four different iterative phases. Integrated quality control was performed with an in-process scale and NIR spectroscopy supported by HPLC content uniformity measurements. In total, 6088 propranolol tablets were produced at different locations during this study. It was shown that the dosing accuracy of the process increased from about 90% to 100% from Phase 1 to Phase 4 by making improvements to the formulation and the hardware solutions. The results indicate that through this automated and quality controlled compounding approach, extemporaneous pharmacy manufacturing can take a giant leap forward towards automation and digital manufacture of dosage forms in hospital pharmacies and compounding pharmacies.
Collapse
Affiliation(s)
- Niklas Sandler Topelius
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Farnaz Shokraneh
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Mahsa Bahman
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Artillerigatan 6A, 02520 Turku, Finland
| | - Julius Lahtinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Niko Hassinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Sari Airaksinen
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Soumya Verma
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Ludmila Hrizanovska
- CurifyLabs Oy, Salmisaarenaukio 1, 00180 Helsinki, Finland; (F.S.); (J.L.); (S.V.)
| | - Jana Lass
- Tartu University Hospital, 50406 Tartu, Estonia;
| | - Urve Paaver
- Institute of Pharmacy, Tartu University, 50411 Tartu, Estonia;
| | | | | | | | | | - Julia Malik
- Asklepios Klinik Nord, 22417 Hamburg, Germany;
| | | | | | - Mattias Paulsson
- Department of Women’s and Children’s Health, Uppsala University, Akademiska Sjukhuset, SE-751 85 Uppsala, Sweden
| | - Jan Dekker
- UMC Utrecht, 3584 CX Utrecht, The Netherlands
| | | | - Maria Rautamo
- HUS Helsinki University Hospital, 00029 Helsinki, Finland;
- Faculty of Pharmacy, University of Helsinki, 00100 Helsinki, Finland
| | - Hendrik Lück
- UKSH Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- UKSH Universitätsklinikum Schleswig-Holstein, 24105 Lubeck, Germany
| | - Antoine Pierrot
- Centre Hospitalier Universitaire Vaudois, 1005 Lausanne, Switzerland
| | | | | | - Stefanie Zibolka
- Universitätsklinikum Magdeburg A.ö.R., 39120 Magdeburg, Germany;
| | - Uli Lösch
- Universitätsspital Basel, 4031 Basel, Switzerland;
| | | | - Ulrich Griesser
- Institute of Pharmacy, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Karin Hummer
- Landeskrankenanstalten-Betriebsgesellschaft—KABEG (Klagenfurt), 9020 Klagenfurt am Wörthersee, Austria
| | | | - Anna Harjans
- Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | | | - Ralph Heimke-Brinck
- University Hospital Erlangen (Apotheke des Universitätsklinikums Erlangen), 91054 Erlangen, Germany;
| | | | | |
Collapse
|
11
|
Tong H, Zhang J, Ma J, Zhang J. Perspectives on 3D printed personalized medicines for pediatrics. Int J Pharm 2024; 653:123867. [PMID: 38310991 DOI: 10.1016/j.ijpharm.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
In recent years, the rapid advancement of three-dimensional (3D) printing technology has yielded distinct benefits across various sectors, including pharmaceuticals. The pharmaceutical industry has particularly experienced advantages from the utilization of 3D-printed medications, which have invigorated the development of tailored drug formulations. The approval of 3D-printed drugs by the U.S. Food and Drug Administration (FDA) has significantly propelled personalized drug delivery. Additionally, 3D printing technology can accommodate the precise requirements of pediatric drug dosages and the complexities of multiple drug combinations. This review specifically concentrates on the application of 3D printing technology in pediatric preparations, encompassing a broad spectrum of uses and refined pediatric formulations. It compiles and evaluates the fundamental principles associated with the application of 3D printing technology in pediatric preparations, including its merits and demerits, and anticipates its future progression. The objective is to furnish theoretical underpinning for 3D printing technology to facilitate personalized drug delivery in pediatrics and to advocate for its implementation in clinical settings.
Collapse
Affiliation(s)
- Haixu Tong
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Jing Ma
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou 730000, China.
| |
Collapse
|
12
|
Carou-Senra P, Rodríguez-Pombo L, Monteagudo-Vilavedra E, Awad A, Alvarez-Lorenzo C, Basit AW, Goyanes A, Couce ML. 3D Printing of Dietary Products for the Management of Inborn Errors of Intermediary Metabolism in Pediatric Populations. Nutrients 2023; 16:61. [PMID: 38201891 PMCID: PMC10780524 DOI: 10.3390/nu16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The incidence of Inborn Error of Intermediary Metabolism (IEiM) diseases may be low, yet collectively, they impact approximately 6-10% of the global population, primarily affecting children. Precise treatment doses and strict adherence to prescribed diet and pharmacological treatment regimens are imperative to avert metabolic disturbances in patients. However, the existing dietary and pharmacological products suffer from poor palatability, posing challenges to patient adherence. Furthermore, frequent dose adjustments contingent on age and drug blood levels further complicate treatment. Semi-solid extrusion (SSE) 3D printing technology is currently under assessment as a pioneering method for crafting customized chewable dosage forms, surmounting the primary limitations prevalent in present therapies. This method offers a spectrum of advantages, including the flexibility to tailor patient-specific doses, excipients, and organoleptic properties. These elements are pivotal in ensuring the treatment's efficacy, safety, and adherence. This comprehensive review presents the current landscape of available dietary products, diagnostic methods, therapeutic monitoring, and the latest advancements in SSE technology. It highlights the rationale underpinning their adoption while addressing regulatory aspects imperative for their seamless integration into clinical practice.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Einés Monteagudo-Vilavedra
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK;
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (P.C.-S.); (L.R.-P.); (C.A.-L.)
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK
- FABRX Artificial Intelligence, 27543 O Saviñao, Spain
| | - María L. Couce
- Servicio de Neonatología, Unidad de Diagnóstico y Tratamiento de Enfermedades Metabólicas Congénitas, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, RICORS, CIBERER, MetabERN, 15706 Santiago de Compostela, Spain;
| |
Collapse
|
13
|
Johannesson J, Wu M, Johansson M, Bergström CAS. Quality attributes for printable emulsion gels and 3D-printed tablets: Towards production of personalized dosage forms. Int J Pharm 2023; 646:123413. [PMID: 37726040 DOI: 10.1016/j.ijpharm.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
3D-printing technology offers a flexible manufacturing platform with the potential to address the need of personalized dosage forms. However, quality aspects of such small-scale, on-demand production of pharmaceutical products intended for personalization is still limited. The aim of this study was therefore to study critical quality control attributes of lipid tablets produced by semi-solid extrusion (SSE) 3D printing from emulsion gels incorporating a poorly water-soluble drug. Quality attributes for both the printable emulsion gel and the printed dosage forms were assessed. The emulsion gel was shown to be printable with accurate dosing for at least one month of storage at 4 °C. Tablets were 3D printed in different sizes and a correlation, R2 value of 0.99, was found between the weight and the drug content. The 3D-printed tablets complied with the mass and drug content uniformity requirements described in the European Pharmacopoeia.. Solid-state characterization of the tablets during short-term storage revealed no signs of crystallinity of the drug. Lastly, the lipid digestion and drug release were unchanged after short-term storage of the tablets. This study demonstrates the potential of SSE 3D printing for personalized dosing of a lipid-based formulation strategy and discusses central quality attributes for the printable formulation and the 3D-printed dosage form.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mingjun Wu
- Department of Pharmacy, Uppsala University, SE 751 23 Uppsala, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences (SLU), SE 750 07 Uppsala, Sweden
| | | |
Collapse
|
14
|
Novack GD. Eyes on New Product Development. J Ocul Pharmacol Ther 2023. [PMID: 37367200 DOI: 10.1089/jop.2023.29106.gdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Affiliation(s)
- Gary D Novack
- PharmaLogic Development, Inc., San Rafael, California, USA
- Department of Ophthalmology, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|