1
|
Matuszewska O, Battisti T, Ferreira RR, Biot N, Demitri N, Mézière C, Allain M, Sallé M, Mañas-Valero S, Coronado E, Fresta E, Costa RD, Bonifazi D. Tweaking the Optoelectronic Properties of S-Doped Polycyclic Aromatic Hydrocarbons by Chemical Oxidation. Chemistry 2023; 29:e202203115. [PMID: 36333273 DOI: 10.1002/chem.202203115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
Peri-thiaxanthenothiaxanthene, an S-doped analog of peri-xanthenoxanthene, is used as a polycyclic aromatic hydrocarbon (PAH) scaffold to tune the molecular semiconductor properties by editing the oxidation state of the S-atoms. Chemical oxidation of peri-thiaxanthenothiaxanthene with H2 O2 led to the relevant sulfoxide and sulfone congeners, whereas electrooxidation gave access to sulfonium-type derivatives forming crystalline mixed valence (MV) complexes. These complexes depicted peculiar molecular and solid-state arrangements with face-to-face π-π stacking organization. Photophysical studies showed a widening of the optical bandgap upon progressive oxidation of the S-atoms, with the bis-sulfone derivative displaying the largest value (E00 =2.99 eV). While peri-thiaxanthenothiaxanthene showed reversible oxidation properties, the sulfoxide and sulfone derivatives mainly showed reductive events, corroborating their n-type properties. Electric measurements of single crystals of the MV complexes exhibited a semiconducting behavior with a remarkably high conductivity at room temperature (10-1 -10-2 S cm-1 and 10-2 -10-3 S cm-1 for the O and S derivatives, respectively), one of the highest reported so far. Finally, the electroluminescence properties of the complexes were tested in light-emitting electrochemical cells (LECs), obtaining the first S-doped mid-emitting PAH-based LECs.
Collapse
Affiliation(s)
- Oliwia Matuszewska
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Tommaso Battisti
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Ruben R Ferreira
- Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Nicolas Biot
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Cécile Mézière
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Marc Sallé
- MOLTECH-Anjou-UMR CNRS 6200, UNIV Angers, SFR Matrix, 2 Boulevard Lavoisier, 49045, Angers Cedex, France
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain
| | - Elisa Fresta
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Rubén D Costa
- Chair of Biogenic Functional Materials, Technical University Munich, Schulgasse 22, 94315, Straubing, Germany
| | - Davide Bonifazi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,Institute of Organic Chemistry, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
2
|
Krueger TD, Giesbers G, Van Court RC, Zhu L, Kim R, Beaudry CM, Robinson SC, Ostroverkhova O, Fang C. Ultrafast Dynamics and Photoresponse of a Fungi-Derived Pigment Xylindein from Solution to Thin Films. Chemistry 2021; 27:5627-5631. [PMID: 33543812 DOI: 10.1002/chem.202005155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Gregory Giesbers
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Ray C Van Court
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Ryan Kim
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Seri C Robinson
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Oksana Ostroverkhova
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
3
|
Krueger TD, Giesbers G, Van Court RC, Zhu L, Kim R, Beaudry CM, Robinson SC, Ostroverkhova O, Fang C. Ultrafast Dynamics and Photoresponse of a Fungi-Derived Pigment Xylindein from Solution to Thin Films. Chemistry 2021; 27:5627-5631. [PMID: 33543812 DOI: 10.1021/acs.jpcc.0c09627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Indexed: 05/22/2023]
Abstract
Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Gregory Giesbers
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Ray C Van Court
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Ryan Kim
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Seri C Robinson
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Oksana Ostroverkhova
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
4
|
Algoazy N, Knight JG, Waddell PG, Aerts R, Herrebout W, Al-Sharif HHT, Karlsson JKG, Harriman A. Synthesis, Structure and Photophysical Properties of a New Class of Inherently Chiral Boron(III) Chelates-The tert-Leucine Complexes. Chemistry 2021; 27:5246-5258. [PMID: 33370464 DOI: 10.1002/chem.202005246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/24/2020] [Indexed: 11/07/2022]
Abstract
A new family of boron(III) chelates is introduced whereby molecular chirality, confirmed by circular dichroism, is imported during synthesis such that isolation of the diastereoisomers does not require separation procedures. The photophysical properties of two members of the family have been examined: the N,O,O-salicylaldehyde-based derivative shows pronounced intramolecular charge-transfer character in fluid solution and is weakly fluorescent, with a large Stokes shift. The corresponding 2-methylamino-benzaldehyde-derived N,N,O-chelate absorbs and fluoresces in the visible region with a much smaller Stokes shift. Orange fluorescence is also observed for this compound as a cast film. Temperature-dependence studies show that decay of the fluorescent state is weakly activated but emission is less than quantitative at 77 K. Quite rare for boron(III)-based chelates, this derivative undergoes intersystem crossing to form a meta-stable triplet-excited state. X-ray crystal structures are reported for both compounds, along with simulated ECD spectra.
Collapse
Affiliation(s)
- Nawaf Algoazy
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Julian G Knight
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Paul G Waddell
- Crystallography Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Roy Aerts
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hatun H T Al-Sharif
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Joshua K G Karlsson
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
5
|
Mao H, Young RM, Krzyaniak MD, Wasielewski MR. Controlling the Dynamics of Three Electron Spin Qubits in a Donor-Acceptor-Radical Molecule Using Dielectric Environment Changes. J Phys Chem Lett 2021; 12:2213-2218. [PMID: 33630591 DOI: 10.1021/acs.jpclett.1c00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photogenerated entangled electron spin pairs provide a versatile source of molecular qubits. Here, we examine the spin-dependent dynamics of a covalent donor-acceptor-radical molecule, D-A-R•, where the donor chromophore (D) is peri-xanthenoxanthene (PXX), the acceptor (A) is pyromellitimide (PI), and the radical (R•) is α,γ-bisdiphenylene-β-phenylallyl (BDPA). Selective photoexcitation of D within D-A-R• in butyronitrile/propionitrile at 140 K and butyronitrile at 105 K results in the spin-selective reactions D-A-R• → D•+-1(A•--R•) and D•+-3(A•--R•). Subsequently, at 140 K, D•+-1(A•--R•) → D•+-A-R-, whereas D•+-3(A•--R•) → D-A-R•. In contrast, at 105 K, D•+-3(A•--R•) → 3*D-A-R• and D-A-R•. Time-resolved EPR spectroscopy shows that 3*D-A-R• is highly spin-polarized, where the ms = ±1/2 spin sublevels of the doublet-quartet manifolds are selectively populated. These results demonstrate dielectric environment control over different spin states in the same molecule.
Collapse
Affiliation(s)
- Haochuan Mao
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D Krzyaniak
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry, Center for Molecular Quantum Transduction, and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
6
|
Schlesinger I, Powers-Riggs NE, Logsdon JL, Qi Y, Miller SA, Tempelaar R, Young RM, Wasielewski MR. Charge-transfer biexciton annihilation in a donor-acceptor co-crystal yields high-energy long-lived charge carriers. Chem Sci 2020; 11:9532-9541. [PMID: 34094218 PMCID: PMC8162030 DOI: 10.1039/d0sc03301d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Organic donor-acceptor (D-A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙+-A˙-, between adjacent D-A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D-A co-crystal. We have co-crystallized a peri-xanthenoxanthene (PXX) donor with a N,N-bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) (Ph4PDI) acceptor to give an orthorhombic PXX-Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for S n ← S0 excitation of PXX and Ph4PDI. Using polarized, broadband, femtosecond pump-probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t -1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron-hole pairs in the crystal. These energetic charge carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis.
Collapse
Affiliation(s)
- Itai Schlesinger
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Natalia E Powers-Riggs
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Jenna L Logsdon
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Yue Qi
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Stephen A Miller
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Roel Tempelaar
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University 2145 Sheridan Road Evanston Illinois 60208-3113 USA
| |
Collapse
|
7
|
Bozdemir ÖA, Al‐Sharif HHT, McFarlane W, Waddell PG, Benniston AC, Harriman A. Solid‐State Emission from Mono‐ and Bichromophoric Boron Dipyrromethene (BODIPY) Derivatives and Comparison with Fluid Solution. Chemistry 2019; 25:15634-15645. [DOI: 10.1002/chem.201903902] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Özgür Altan Bozdemir
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
- Department of ChemistryAtaturk University Erzurum 25240 Turkey
| | - Hatun H. T. Al‐Sharif
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - William McFarlane
- NMR Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Crystallography Laboratory, SNESNewcastle University Newcastle upon Tyne NE1 7RU UK
| | - Andrew C. Benniston
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics LaboratorySchool of Natural and Environmental Science (SNES)Newcastle University Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
8
|
Takaishi K, Hinoide S, Matsumoto T, Ema T. Axially Chiral peri-Xanthenoxanthenes as a Circularly Polarized Luminophore. J Am Chem Soc 2019; 141:11852-11857. [DOI: 10.1021/jacs.9b06240] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Sakiko Hinoide
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tomoki Matsumoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Woodford OJ, Ziessel R, Harriman A, Wills C, Alsimaree AA, Knight JG. Optical spectroscopic properties recorded for simple BOPHY dyes in condensed media: The mirror-symmetry factor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 208:57-64. [PMID: 30292151 DOI: 10.1016/j.saa.2018.09.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The BOPHY structural scaffold provides opportunities for the synthesis of innumerable derivatives with linear geometries and well-controlled π-conjugation pathways. The simpler BOPHY chromophores are highly fluorescent but exhibit poor mirror symmetry between absorption and fluorescence spectra at ambient temperature. In particular, the absorption (and excitation) spectra are broad and appear as two overlapping bands of comparable intensity. In constrained media, such as low-temperature rigid glasses or stretched poly(ethylene) films, mirror symmetry is restored. Analysis of the temperature dependence recorded for simple BOPHY derivatives indicates that the vibronic envelope accompanying the electronic transitions can be well described in terms of low- and medium-frequency modes. Whereas the fluorescence spectral profile is only weakly dependent on temperature, the excitation spectrum is far more affected. The magnitude of the low-frequency mode, and the associated electron-phonon coupling, increase substantially with increasing temperature and is responsible for temperature broadening and distortion of the excitation spectrum in solution. This critical low-frequency vibronic mode is associated with out-of-plane torsional bending of the BOPHY unit. Variable temperature NMR studies failed to provide unequivocal evidence for conformational changes of one of the derivatives over the temperature range 193-353 K.
Collapse
Affiliation(s)
- Owen J Woodford
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Raymond Ziessel
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Corinne Wills
- NMR Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Abdulrahman A Alsimaree
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Julian G Knight
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
10
|
Sirbu D, Karlsson JKG, Harriman A. Nonradiative Decay Channels for a Structurally-Distorted, Monostrapped BODIPY Derivative. J Phys Chem A 2018; 122:9160-9170. [DOI: 10.1021/acs.jpca.8b07840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Joshua K. G. Karlsson
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
11
|
Berezin A, Biot N, Battisti T, Bonifazi D. Oxygen-Doped Zig-Zag Molecular Ribbons. Angew Chem Int Ed Engl 2018; 57:8942-8946. [DOI: 10.1002/anie.201803282] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Andrey Berezin
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Nicolas Biot
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Tommaso Battisti
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Davide Bonifazi
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
12
|
Berezin A, Biot N, Battisti T, Bonifazi D. Oxygen-Doped Zig-Zag Molecular Ribbons. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrey Berezin
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Nicolas Biot
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Tommaso Battisti
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| | - Davide Bonifazi
- School of Chemistry; Cardiff University; Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
13
|
Papadakis I, Bouza Z, Stathis A, Orfanos I, Couris S, Miletić T, Bonifazi D. Experimental Study of the Structural Effect on the Nanosecond Nonlinear Optical Response of O-Doped Polycyclic Aromatic Hydrocarbons. J Phys Chem A 2018; 122:5142-5152. [PMID: 29786443 DOI: 10.1021/acs.jpca.8b02737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nonlinear optical response of some O-doped polycyclic aromatic hydrocarbons (PAHs) is systematically investigated in the present work aiming to understand the influence of structural effects on their nonlinear optical response. In that view, the third-order nonlinear optical properties of these PAHs were measured under 4 ns visible (532 nm) and infrared (1064 nm) laser excitation. The O-doped PAHs were found to exhibit large saturable absorption and negative sign nonlinear refraction under visible excitation, increasing both with the addition of naphthalene units and with the number of O atoms. Their nonlinear optical response was found to be negligible under infrared excitation. Similar measurements performed on thin films of these PAHs have shown that they maintain their large nonlinear optical response even in the solid state, confirming their high potential for optoelectronic and photonic applications.
Collapse
Affiliation(s)
- Ioannis Papadakis
- Physics Department , University of Patras , 26504 Patras , Greece.,Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , P.O. Box 1414, Patras 26504 , Greece
| | - Zoi Bouza
- Physics Department , University of Patras , 26504 Patras , Greece.,Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , P.O. Box 1414, Patras 26504 , Greece
| | - Aristeidis Stathis
- Physics Department , University of Patras , 26504 Patras , Greece.,Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , P.O. Box 1414, Patras 26504 , Greece
| | - Ioannis Orfanos
- Physics Department , University of Patras , 26504 Patras , Greece.,Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , P.O. Box 1414, Patras 26504 , Greece
| | - Stelios Couris
- Physics Department , University of Patras , 26504 Patras , Greece.,Institute of Chemical Engineering Sciences (ICE-HT) , Foundation for Research and Technology-Hellas (FORTH) , P.O. Box 1414, Patras 26504 , Greece
| | - Tanja Miletić
- School of Chemistry , Cardiff University , Park Place, CF10 3AT Cardiff , U.K
| | - Davide Bonifazi
- School of Chemistry , Cardiff University , Park Place, CF10 3AT Cardiff , U.K
| |
Collapse
|
14
|
Sciutto A, Fermi A, Folli A, Battisti T, Beames JM, Murphy DM, Bonifazi D. Customizing Photoredox Properties of PXX-based Dyes through Energy Level Rigid Shifts of Frontier Molecular Orbitals. Chemistry 2018; 24:4382-4389. [DOI: 10.1002/chem.201705620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Andrea Sciutto
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Andrea Fermi
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Andrea Folli
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Tommaso Battisti
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Joseph M. Beames
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Damien M. Murphy
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| | - Davide Bonifazi
- School of Chemistry; Cardiff University; Park Place Cardiff CF10 3AT UK
| |
Collapse
|