1
|
de Melo SMG, Dos Santos T, Silva DG, Martins YA, Eckhardt P, Lopez RFV, Opatz T, Protti S, da Silva Emery F. Versatile Metal-Free Arylation of BODIPY and Bis(BF 2) Chromophores by Using Arylazosulfones in a Sunflow System. Chemistry 2024:e202402634. [PMID: 39078075 DOI: 10.1002/chem.202402634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 07/31/2024]
Abstract
BODIPYs have a well-established role in biological sciences as chemosensors and versatile biological markers due to their chemical reactivity, which allows for fine-tuning of their photophysical characteristics. In this work, we combined the unique reactivity of arylazo sulfones with the advantages of a "sunflow" reactor to develop a fast, efficient, and versatile method for the photochemical arylation of BODIPYs and other chromophores. This approach resulted in red-shifted emitting fluorophores due to extended electronic delocalization at the 3- and 5-positions of the BODIPY core. This method represents an advantageous approach for BODIPY functionalization compared to existing strategies.
Collapse
Affiliation(s)
- Shaiani Maria Gil de Melo
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Thiago Dos Santos
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Daniel Gedder Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Duesbergweg 10-14, Mainz, 55128, Germany
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Viale Taramelli 12, 27100, Pavia, Italy
| | - Flavio da Silva Emery
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
- Center of Research and Advancements in Fragments and Molecular Targets-CRAFT, FCFRP-USP, Av. do Café, s/n° - Campus Universitário da USP, 14040-903, Ribeirão Preto/SP, Brazil
| |
Collapse
|
2
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
3
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
4
|
Lombardi L, Kovtun A, Mantovani S, Bertuzzi G, Favaretto L, Bettini C, Palermo V, Melucci M, Bandini M. Visible-Light Assisted Covalent Surface Functionalization of Reduced Graphene Oxide Nanosheets with Arylazo Sulfones. Chemistry 2022; 28:e202200333. [PMID: 35319124 DOI: 10.1002/chem.202200333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 01/05/2023]
Abstract
We present an environmentally benign methodology for the covalent functionalization (arylation) of reduced graphene oxide (rGO) nanosheets with arylazo sulfones. A variety of tagged aryl units were conveniently accommodated at the rGO surface via visible-light irradiation of suspensions of carbon nanostructured materials in aqueous media. Mild reaction conditions, absence of photosensitizers, functional group tolerance and high atomic fractions (XPS analysis) represent some of the salient features characterizing the present methodology. Control experiments for the mechanistic elucidation (Raman analysis) and chemical nanomanipulation of the tagged rGO surfaces are also reported.
Collapse
Affiliation(s)
- Lorenzo Lombardi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis - C3, Via Selmi 2, 40126, Bologna, Italy
| | - Alessandro Kovtun
- Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129, Bologna, Italy
| | - Sebastiano Mantovani
- Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129, Bologna, Italy
| | - Giulio Bertuzzi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis - C3, Via Selmi 2, 40126, Bologna, Italy
| | - Laura Favaretto
- Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129, Bologna, Italy
| | - Cristian Bettini
- Center for Chemical Catalysis - C3, Via Selmi 2, 40126, Bologna, Italy
| | - Vincenzo Palermo
- Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129, Bologna, Italy
| | - Manuela Melucci
- Istituto per la Sintesi e la Fotoreattività (ISOF) - CNR, Via Gobetti, 101, 40129, Bologna, Italy
| | - Marco Bandini
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126, Bologna, Italy.,Center for Chemical Catalysis - C3, Via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
5
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
6
|
Bui TT, Tran VH, Kim H. Visible‐Light‐Mediated Synthesis of Sulfonyl Fluorides from Arylazo Sulfones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tien Tan Bui
- Department of Chemistry Iowa State University Ames Iowa 50011 United States
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Van Hieu Tran
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
| | - Hee‐Kwon Kim
- Department of Nuclear Medicine Molecular Imaging & Therapeutic Medicine Research Center Jeonbuk National University Medical School and Hospital Jeonju 54907 Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University- Biomedical Research Institute of Jeonbuk National University Hospital Jeonju 54907 Republic of Korea
| |
Collapse
|
7
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Wang R, Chen F, Jiang L, Yi W. Electrochemical Thiolation and Borylation of Arylazo Sulfones with Thiols and B
2
pin
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rongkang Wang
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Fangming Chen
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Lvqi Jiang
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
| | - Wenbin Yi
- School of Chemical Engineering Nanjing University of Science and Technology 200 Xiao Ling Wei Street Nanjing 210094 People's Republic of China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute Organic Chemistry Chinese Academy of Sciences Shanghai 200032
| |
Collapse
|
9
|
Albini A. Norrish’ type I and II reactions and their role in the building of photochemical science. Photochem Photobiol Sci 2021; 20:161-181. [DOI: 10.1007/s43630-020-00003-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
|
10
|
Chawla R, Jaiswal S, Dutta PK, Yadav LDS. A photocatalyst-free visible-light-mediated solvent-switchable route to stilbenes/vinyl sulfones from β-nitrostyrenes and arylazo sulfones. Org Biomol Chem 2021; 19:6487-6492. [PMID: 34241618 DOI: 10.1039/d1ob01028j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalyst-free visible-light-mediated reactions, based on the presence of a visible-light-absorbing functional group in the starting material itself in order to exclude the often costly, hazardous, degradable and difficult to remove or recover photoredox catalysts, have been gaining momentum recently. We have employed this approach to develop a denitrative photocatalyst-free visible-light-mediated protocol for the arylation/sulfonylation of β-nitrostyrenes employing arylazo sulfones (bench-stable photolabile compounds) in a switchable solvent-controlled manner. Arylazo sulfones served as the aryl and sulfonyl radical precursors under blue LED irradiation for the synthesis of trans-stilbenes and (E)-vinyl sulfones in CH3CN and dioxane/H2O 2 : 1, respectively. The absence of any metal, photocatalyst and additive; excellent selectivity (E-stereochemistry) and solvent-switchability; and the use of visible light and ambient temperature are the prime assets of the developed method. Moreover, we report the first photocatalyst-free visible light-driven route to synthesize stilbenes and vinyl sulfones from readily available β-nitrostyrenes.
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - P K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Lal Dhar S Yadav
- Green Synthesis Lab, Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
11
|
Li A, Li Y, Liu J, Chen J, Lu K, Qiu D, Fagnoni M, Protti S, Zhao X. Metal-Free Trifluoromethylthiolation of Arylazo Sulfones. J Org Chem 2021; 86:1292-1299. [PMID: 33350303 PMCID: PMC8765700 DOI: 10.1021/acs.joc.0c02669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/20/2022]
Abstract
A visible-light-driven protocol for the synthesis of aryl trifluoromethyl thioethers under photocatalyst- and metal-free conditions has been pursued. The procedure exploits the peculiar properties of arylazo sulfones (having electron-rich or electron-poor substituents on the (hetero)aromatic ring) as photochemical precursors of aryl radicals and S-trifluoromethyl arylsulfonothioates as easy-to-handle trifluoromethylthiolating agents.
Collapse
Affiliation(s)
- Ankun Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Yuxuan Li
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Junjie Liu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Jingqi Chen
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Kui Lu
- College
of Biotechnology, Tianjin University of
Science & Technology, Tianjin 300457, China
| | - Di Qiu
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Xia Zhao
- Tianjin
Key Laboratory of Structure and Performance for Functional Molecules,
College of Chemistry, Tianjin Normal University, Tianjin 300387, People’s Republic of China
| |
Collapse
|
12
|
Qrareya H, Meazza L, Protti S, Fagnoni M. Metal-free synthesis of biarenes via photoextrusion in di(tri)aryl phosphates. Beilstein J Org Chem 2020; 16:3008-3014. [PMID: 33363669 PMCID: PMC7736689 DOI: 10.3762/bjoc.16.250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
A metal-free route for the synthesis of biarenes has been developed. The approach is based on the photoextrusion of a phosphate moiety occurring upon irradiation of biaryl- and triaryl phosphates. The reaction involves an exciplex as the intermediate and it is especially suitable for the preparation of electron-rich biarenes.
Collapse
Affiliation(s)
- Hisham Qrareya
- PhotoGreen Lab, Department of Chemistry, viale Taramelli 12, 27100 Pavia, Italy.,Industrial Chemistry Department, Arab American University, 240 Jenin 13, Zababdeh, Palestine
| | - Lorenzo Meazza
- PhotoGreen Lab, Department of Chemistry, viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
13
|
Jang J, Kim R, Kim DY. Photocatalyst-free photoredox synthesis of diaryl selenides by reaction of diselenides with aryldiazo sulfones. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1850796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Jihoon Jang
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Rabin Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Dae Young Kim
- Department of Chemistry, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
14
|
Liu J, Tian M, Li Y, Shan X, Li A, Lu K, Fagnoni M, Protti S, Zhao X. Metal‐Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Light‐Driven Activation of Arylazo Sulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junjie Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Miaomiao Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Yuxuan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xiwen Shan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Ankun Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Kui Lu
- College of Biotechnology Tianjin University of Science & Technology 300457 Tianjin China
| | - Maurizio Fagnoni
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xia Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| |
Collapse
|
15
|
Qiu D, Lian C, Mao J, Fagnoni M, Protti S. Dyedauxiliary Groups, an Emerging Approach in Organic Chemistry. The Case of Arylazo Sulfones. J Org Chem 2020; 85:12813-12822. [PMID: 32956584 PMCID: PMC8011925 DOI: 10.1021/acs.joc.0c01895] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of research papers that report photocatalyst-free protocols is currently increasing. Among the different approaches proposed, the conversion of a strong C-X bond of a stable substrate into a photolabile reactive moiety has been recently proposed. In this Synopsis, we introduce the so-dubbed dyedauxiliary group strategy by focusing on arylazo sulfones that are bench stable and visible-light responsive derivatives of anilines that have been exploited as precursors of a wide range of intermediates, including carbon-centered radicals as well as aryl cations.
Collapse
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
16
|
Affiliation(s)
- Carlotta Raviola
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab University of Pavia Viale Taramelli 10 27100 Pavia Italy
| |
Collapse
|
17
|
Yaseen MA, Mumtaz S, Hunter RL, Wall D, Robertson MJ, Oelgemöller M. Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor. Aust J Chem 2020. [DOI: 10.1071/ch20138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of photochemical transformations has been successfully conducted under continuous-flow conditions in a concentrating solar trough reactor. Photoacylations and [2+2]-photocycloadditions involving 1,4-naphthoquinones gave the corresponding photoproducts in moderate to high yields with residence times of 70min. Likewise, acetone-sensitized photodecarboxylations involving phthalimides furnished the corresponding benzylated hydroxy phthalimidines in good to excellent yields and purity with residence times of 40min. Compared with corresponding exposures to direct sunlight conducted in a solar float, flow operation generally gave superior conversions and subsequent yields.
Collapse
|
18
|
Rößler M, Huth PU, Liauw MA. Process analytical technology (PAT) as a versatile tool for real-time monitoring and kinetic evaluation of photocatalytic reactions. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00256a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining in situ Raman spectroscopy with multivariate data analysis enables the real-time monitoring and kinetic evaluation of photocatalytic reactions. The applicability is demonstrated on the photooxidation of 4-methoxythiophenol.
Collapse
Affiliation(s)
- Martin Rößler
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Philipp U. Huth
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Marcel A. Liauw
- Institut für Technische und Makromolekulare Chemie (ITMC)
- RWTH Aachen University
- 52074 Aachen
- Germany
| |
Collapse
|
19
|
Qiu D, Lian C, Mao J, Ding Y, Liu Z, Wei L, Fagnoni M, Protti S. Visible Light‐Driven, Photocatalyst‐Free Arbuzov‐Like Reaction via Arylazo Sulfones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900953] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Yi Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Zerong Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Liyan Wei
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia V. Le Taramelli 12 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of ChemistryUniversity of Pavia V. Le Taramelli 12 Pavia Italy
| |
Collapse
|
20
|
A tan for molecules: photocatalyzed synthesis with direct sunlight. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Bartolomeu ADA, Silva RC, Brocksom TJ, Noël T, de Oliveira KT. Photoarylation of Pyridines Using Aryldiazonium Salts and Visible Light: An EDA Approach. J Org Chem 2019; 84:10459-10471. [DOI: 10.1021/acs.joc.9b01879] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aloisio de A. Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Rodrigo C. Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J. Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Sustainable Process Engineering, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, De Rondom 70 (Helix, STO 1.37), 5612 AP Eindhoven, The Netherlands
| | - Kleber T. de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
22
|
Lian C, Yue G, Mao J, Liu D, Ding Y, Liu Z, Qiu D, Zhao X, Lu K, Fagnoni M, Protti S. Visible-Light-Driven Synthesis of Arylstannanes from Arylazo Sulfones. Org Lett 2019; 21:5187-5191. [DOI: 10.1021/acs.orglett.9b01788] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chang Lian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Guanglu Yue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Jinshan Mao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Danyang Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Yi Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Zerong Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Xia Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic−Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Kui Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, Pavia 27100, Italy
| |
Collapse
|
23
|
Abdulla HO, Amin AA, Raviola C, Opatz T, Protti S, Fagnoni M. Smooth Metal-Free Photoinduced Preparation of Valuable 8-Arylxanthines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Havall Othman Abdulla
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department; College of Science; Salahaddin University; Erbil Iraq
| | - Ahmed A. Amin
- Chemistry Department; College of Education; Salahaddin University; Erbil Iraq
| | - Carlotta Raviola
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Institute of Organic Chemistry; College of Education; Johannes Gutenberg University of Mainz; 55128 Mainz Germany
| | - Stefano Protti
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
24
|
Protti S, Ravelli D, Fagnoni M. Wavelength dependence and wavelength selectivity in photochemical reactions. Photochem Photobiol Sci 2019; 18:2094-2101. [DOI: 10.1039/c8pp00512e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Our study describes how organic photochemists can modify the outcome of a reaction by tuning the wavelength.
Collapse
Affiliation(s)
- Stefano Protti
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - Davide Ravelli
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab
- Department of Chemistry
- University of Pavia
- 27100 Pavia
- Italy
| |
Collapse
|
25
|
Abstract
In recent years, photochemistry has been a highly active research field. This renaissance is linked to the upsurge of photoredox catalysis, a versatile platform for synthetic methodologies using visible light photons as a traceless reagent. In contrast with UV, visible light constitutes almost half of the ground solar irradiance, making the use of solar light in chemistry a sustainable and viable possibility. However, the direct use of sunlight to power chemical reactions is still little explored. This can be explained by both the hurdles associated with solar radiation (e.g., its variability, irreproducibility, high IR content, etc.) and the need for a specialized photoreactor. Most of these issues can be tackled with technological solutions, and especially with the recourse to flow chemistry. Flow chemistry goes hand in hand with photochemistry thanks to the uniform irradiation it provides to the reaction. Furthermore, a continuous-flow reactor can be easily integrated with different solar collectors (including compound parabolic concentrators and luminescent solar concentrators) and constitutes the most efficient approach to solar photochemistry. After a description of the characteristics of the solar radiation relevant to chemistry, this chapter critically describes the different type of solar photoreactors and their applications in synthetic organic chemistry. Finally, an outlook on the future of solar photochemistry in flow is included.
Collapse
Affiliation(s)
- Dario Cambié
- Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands
| | - Timothy Noël
- Micro Flow Chemistry and Process Technology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
26
|
Xu Y, Yang X, Fang H. Additive- and Photocatalyst-Free Borylation of Arylazo Sulfones under Visible Light. J Org Chem 2018; 83:12831-12837. [PMID: 30256639 DOI: 10.1021/acs.joc.8b01662] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yuliang Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Xinying Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Hao Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmacy, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| |
Collapse
|