1
|
Adhikari K, Vanermen M, Da Silva G, Van den Wyngaert T, Augustyns K, Elvas F. Trans-cyclooctene-a Swiss army knife for bioorthogonal chemistry: exploring the synthesis, reactivity, and applications in biomedical breakthroughs. EJNMMI Radiopharm Chem 2024; 9:47. [PMID: 38844698 PMCID: PMC11156836 DOI: 10.1186/s41181-024-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Trans-cyclooctenes (TCOs) are highly strained alkenes with remarkable reactivity towards tetrazines (Tzs) in inverse electron-demand Diels-Alder reactions. Since their discovery as bioorthogonal reaction partners, novel TCO derivatives have been developed to improve their reactivity, stability, and hydrophilicity, thus expanding their utility in diverse applications. MAIN BODY TCOs have garnered significant interest for their applications in biomedical settings. In chemical biology, TCOs serve as tools for bioconjugation, enabling the precise labeling and manipulation of biomolecules. Moreover, their role in nuclear medicine is substantial, with TCOs employed in the radiolabeling of peptides and other biomolecules. This has led to their utilization in pretargeted nuclear imaging and therapy, where they function as both bioorthogonal tags and radiotracers, facilitating targeted disease diagnosis and treatment. Beyond these applications, TCOs have been used in targeted cancer therapy through a "click-to-release" approach, in which they act as key components to selectively deliver therapeutic agents to cancer cells, thereby enhancing treatment efficacy while minimizing off-target effects. However, the search for a suitable TCO scaffold with an appropriate balance between stability and reactivity remains a challenge. CONCLUSIONS This review paper provides a comprehensive overview of the current state of knowledge regarding the synthesis of TCOs, and its challenges, and their development throughout the years. We describe their wide ranging applications as radiolabeled prosthetic groups for radiolabeling, as bioorthogonal tags for pretargeted imaging and therapy, and targeted drug delivery, with the aim of showcasing the versatility and potential of TCOs as valuable tools in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Karuna Adhikari
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Maarten Vanermen
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Gustavo Da Silva
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium.
| | - Filipe Elvas
- Molecular Imaging and Radiology, University of Antwerp, Antwerp, Belgium.
- Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
| |
Collapse
|
2
|
Fang Y, Hillman AS, Fox JM. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Top Curr Chem (Cham) 2024; 382:15. [PMID: 38703255 DOI: 10.1007/s41061-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 05/06/2024]
Abstract
Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.
Collapse
Affiliation(s)
- Yinzhi Fang
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
3
|
Sondag D, Maartense L, de Jong H, de Kleijne FFJ, Bonger KM, Löwik DWPM, Boltje TJ, Dommerholt J, White PB, Blanco-Ania D, Rutjes FPJT. Readily Accessible Strained Difunctionalized trans-Cyclooctenes with Fast Click and Release Capabilities. Chemistry 2023; 29:e202203375. [PMID: 36478614 PMCID: PMC10107714 DOI: 10.1002/chem.202203375] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 12/12/2022]
Abstract
The click reaction between a functionalized trans-cyclooctene (TCO) and a tetrazine (Tz) is a compelling method for bioorthogonal conjugation in combination with payload releasing capabilities. However, the synthesis of difunctionalized TCOs remains challenging. As a result, these compounds are poorly accessible, which impedes the development of novel applications. In this work, the scalable and accessible synthesis of a new bioorthogonal difunctionalized TCO is reported in only four single selective high yielding steps starting from commercially available compounds. The TCO-Tz click reaction was assessed and revealed excellent kinetic rates and subsequently payload release was shown with various functionalized derivatives. Tetrazine triggered release of carbonate and carbamate payloads was demonstrated up to 100 % release efficiency and local drug release was shown in a cellular toxicity study which revealed a >20-fold increase in cytotoxicity.
Collapse
Affiliation(s)
- Daan Sondag
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Luuk Maartense
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Frank F J de Kleijne
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Kimberly M Bonger
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Dennis W P M Löwik
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Jan Dommerholt
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Paul B White
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Daniel Blanco-Ania
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| |
Collapse
|
4
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.
Collapse
Affiliation(s)
- Thomas H. Rehm
- Division Energy & Chemical Technology/Flow Chemistry GroupFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
6
|
Pigga JE, Fox JM. Flow Photochemical Syntheses of trans-Cyclooctenes and trans-Cycloheptenes Driven by Metal Complexation. Isr J Chem 2020; 60:207-218. [PMID: 34108738 PMCID: PMC8186252 DOI: 10.1002/ijch.201900085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/19/2022]
Abstract
trans-Cyclooctenes and trans-cycloheptenes have long been the subject of physical organic study, but the broader application had been limited by synthetic accessibility. This account describes the development of a general, flow photochemical method for the preparative synthesis of trans-cycloalkene derivatives. Here, photoisom erization takes place in a closed-loop flow reactor where the reaction mixture is continuously cycled through Ag(I) on silica gel. Selective complexation of the trans-isomer by Ag(I) during flow drives an otherwise unfavorable isomeric ratio toward the trans-isomer. Analogous photoreactions under batch-conditions are low yielding, and flow chemistry is necessary in order to obtain trans-cycloalkenes in preparatively useful yields. The applications of the method to bioorthogonal chemistry and stereospecific transannulation chemistry are described.
Collapse
Affiliation(s)
- Jessica E Pigga
- Department of Chemistry and Biochemistry University of Delaware, Newark DE 19716
| | - Joseph M Fox
- Department of Chemistry and Biochemistry University of Delaware, Newark DE 19716
| |
Collapse
|
7
|
Zhan H, de Jong H, Löwik DWPM. Comparison of Bioorthogonally Cross-Linked Hydrogels for in Situ Cell Encapsulation. ACS APPLIED BIO MATERIALS 2019; 2:2862-2871. [DOI: 10.1021/acsabm.9b00253] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Henan Zhan
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| | - Dennis W. P. M. Löwik
- Institute for Molecules and Materials, Radboud University Nijmegen, 135 Heyendaalseweg, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
8
|
Bruins JJ, van de Wouw C, Keijzer JF, Albada B, van Delft FL. Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine. Methods Mol Biol 2019; 2012:357-368. [PMID: 31161517 DOI: 10.1007/978-1-4939-9546-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteins can be labeled site-specifically and in inducible fashion by exposing a small peptide tag (G4Y) on any of its termini and activating the newly exposed tyrosine residue with the enzyme mushroom tyrosinase. The enzyme generates a quinone by oxidizing the tyrosine, which in turn can perform strain-promoted oxidation-controlled ortho-quinone cycloaddition (SPOCQ) with strained alkynes and alkenes, generating a stable conjugation product. Here, we describe a protocol to perform SPOCQ reaction on proteins, along with notes to optimize yield and reaction rates. Conjugation efficiencies of over 95% to antibodies have been reported using this protocol.
Collapse
Affiliation(s)
- Jorick J Bruins
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Criss van de Wouw
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands.
| | - Floris L van Delft
- Laboratory of Organic Chemistry, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
9
|
Yokoi T, Ueda T, Tanimoto H, Morimoto T, Kakiuchi K. Site-selective conversion of azido groups at carbonyl α-positions into oxime groups leading triazide to a triple click conjugation scaffold. Chem Commun (Camb) 2019; 55:1891-1894. [DOI: 10.1039/c8cc09415b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This paper reports the selective conversion of alkyl azido groups at the carbonyl α-position into oximes, and one-pot triple click conjugation is demonstrated.
Collapse
Affiliation(s)
- Taiki Yokoi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tomomi Ueda
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Hiroki Tanimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Tsumoru Morimoto
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| | - Kiyomi Kakiuchi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- 8916-5 Takayamacho
- Ikoma
| |
Collapse
|