1
|
Ma J, Egodawaththa NM, Guruge C, Márquez OAV, Likes M, Nesnas N. Blue and Green Light Responsive Caged Glutamate. J Photochem Photobiol A Chem 2024; 447:115183. [PMID: 37928883 PMCID: PMC10621743 DOI: 10.1016/j.jphotochem.2023.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Glutamate (Glu) is an excitatory neurotransmitter that plays a critical role in memory. Brain mapping activities of such pathways relied heavily on the ability to release Glu with spatiotemporal precision. Several photo-protecting groups (PPGs), referred to as photocages or cages, were designed to accomplish the release of Glu upon irradiation. Previously reported Glu cages responded to UV upon irradiation with single photons, which limited their use in vivo experiments due to cytotoxicity. Other caged designs suffered from lower quantum efficiency (QE) of release necessitating higher concentrations and/or longer photoirradiation times. There have been limited examples of cages that respond to visible light with single photon irradiation. Herein, we report the efficient preparation of 11 caged Glu examples that respond to two visible wavelengths, 467 nm (thiocoumarin based) and 515-540 nm (BODIPY based). The kinetics of photouncaging were studied for all caged designs, and we report all quantum efficiencies, i.e., quantum yields (Φ), that ranged from 0.0001-0.65. Two of the BODIPY cages are reported here for the first time, and one, Me-BODIPY-Br-Glu, shows the most efficient Glu release with a QE of 0.65. Similar caged designs can be extended to the inhibitory neurotransmitter, GABA. This would enable the use of two visible wavelengths to modulate the release of excitatory and inhibitory neurotransmitters upon demand via optical control.
Collapse
Affiliation(s)
| | | | - Charitha Guruge
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901, United States
| | - Oriana A. Valladares Márquez
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901, United States
| | - Molly Likes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901, United States
| | - Nasri Nesnas
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Blvd., Melbourne, FL 32901, United States
| |
Collapse
|
2
|
Zeng L, Jiang LH, Li JY, Huang L, Chen Y, Yu N, Wang L, Huang K, Peng J, Han G. Metal-Free Far-Red Light-Driven Photolysis via Triplet Fusion to Enhance Checkpoint Blockade Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202218341. [PMID: 36634030 DOI: 10.1002/anie.202218341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Metal-free long-wavelength light-driven prodrug photoactivation is highly desirable for applications such as neuromodulation, drug delivery, and cancer therapy. Herein, via triplet fusion, we report on the far-red light-driven photo-release of an anti-cancer drug by coupling the boron-dipyrromethene (BODIPY)-based photosensitizer with a photocleavable perylene-based anti-cancer drug. Notably, this metal-free triplet fusion photolysis (TFP) strategy can be further advanced by incorporating an additional functional dopant, i.e. an immunotherapy medicine inhibiting the indoleamine 2,3-dioxygenase (IDO), with the far-red responsive triplet fusion pair in an air-stable nanoparticle. With this IDO inhibitor-assisted TFP system we observed efficient inhibition of primary and distant tumors in a mouse model at record-low excitation power, compared to other photo-assisted immunotherapy approaches. This metal-free TFP strategy will spur advancement in photonics and biophotonics fields.
Collapse
Affiliation(s)
- Le Zeng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jia-Yao Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ling Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA.,Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Nuo Yu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Lei Wang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Kai Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Jing Peng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA-01605, USA
| |
Collapse
|
3
|
Han HH, Wang HM, Jangili P, Li M, Wu L, Zang Y, Sedgwick AC, Li J, He XP, James TD, Kim JS. The design of small-molecule prodrugs and activatable phototherapeutics for cancer therapy. Chem Soc Rev 2023; 52:879-920. [PMID: 36637396 DOI: 10.1039/d2cs00673a] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Han-Min Wang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Yi Zang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,Lingang laboratory, Shanghai 201203, China
| | - Adam C Sedgwick
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, OX1 3TA, UK.
| | - Jia Li
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China. .,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China.,National Center for Liver Cancer, Shanghai 200438, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Sakamoto K, Hirano A, Hidaka R, Suzuki AZ, Ueno T, Furuta T. Elucidation of the working principle of a gene-directed caged HDAC inhibitor with cell-type selectivity. Chem Commun (Camb) 2022; 58:10484-10487. [PMID: 36040293 DOI: 10.1039/d2cc03552a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs) play crucial roles in the epigenetic regulation of gene expression. Here, we report CM-Bhc-SAHA, a novel caged HDAC inhibitor, genetically targeting cells of interest. Mammalian cells expressing porcine liver esterase led to the optochemical inhibition of endogenous HDAC activity when treated with CM-Bhc-SAHA and irradiated with 405 nm light.
Collapse
Affiliation(s)
- Kotoko Sakamoto
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Ayumi Hirano
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Rika Hidaka
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Akinobu Z Suzuki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Taro Ueno
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| |
Collapse
|
5
|
Furuta T. Design and Synthesis of Gene-directed Caged Compounds toward Photopharmacology. YAKUGAKU ZASSHI 2022; 142:495-502. [DOI: 10.1248/yakushi.21-00203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University
| |
Collapse
|
6
|
Suzuki AZ, Sakano T, Sasaki H, Watahiki R, Sone M, Horikawa K, Furuta T. Design and synthesis of gene-directed caged cyclic nucleotides exhibiting cell type selectivity. Chem Commun (Camb) 2021; 57:5630-5633. [PMID: 34018507 DOI: 10.1039/d1cc01405f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.
Collapse
Affiliation(s)
- Akinobu Z Suzuki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Taichi Sakano
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Hirona Sasaki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Rei Watahiki
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | - Kazuki Horikawa
- Department of Optical Imaging, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto Cho, Tokushima City, Tokushima 770-8503, Japan
| | - Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| |
Collapse
|
7
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
8
|
Zhang F, Wu Q, Liu H. NIR light-triggered nanomaterials-based prodrug activation towards cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1643. [PMID: 32394638 DOI: 10.1002/wnan.1643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Nanomaterials-based prodrug activation systems have been widely explored in cancer therapy, aiming at overcoming limited dosage formulation, systemic toxicity, and insufficient pharmacokinetic performance of parent drugs. For better delivery control, various stimuli systems, especially nanomaterials-based ones, have come to the forefront. Among them, near-infrared (NIR) light takes advantage of on-demand/site-specific regulation and non-invasiveness. In this review, we will address the developments of nanomaterials-based prodrug over the last decade, the activation mechanisms, and bioapplications under NIR light triggering. The advantages and limitations of NIR-triggered prodrug activation strategies and the perspectives of the next-generation prodrug nanomedicine will also be summarized. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fengrong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Rojas-Gutierrez PA, Bekah D, Seuntjens J, DeWolf C, Capobianco JA. Cellular Uptake, Cytotoxicity and Trafficking of Supported Lipid-Bilayer-Coated Lanthanide Upconverting Nanoparticles in Alveolar Lung Cancer Cells. ACS APPLIED BIO MATERIALS 2019; 2:4527-4536. [DOI: 10.1021/acsabm.9b00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paola A. Rojas-Gutierrez
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Devesh Bekah
- Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Cedars Cancer Centre, McGill University Health Centre, 1001 Boulevard Décarie, Montréal, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - John A. Capobianco
- Department of Chemistry and Biochemistry, and Center for NanoScience Research, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
10
|
Li M, Nguyen L, Subramaniyan B, Bio M, Peer CJ, Kindrick J, Figg WD, Woo S, You Y. PBPK modeling-based optimization of site-specific chemo-photodynamic therapy with far-red light-activatable paclitaxel prodrug. J Control Release 2019; 308:86-97. [PMID: 31299262 DOI: 10.1016/j.jconrel.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) is a clinically approved therapeutic modality to treat certain types of cancers. However, incomplete ablation of tumor is a challenge. Visible and near IR-activatable prodrug, exhibiting the combined effects of PDT and local chemotherapy, showed better efficacy than PDT alone, without systemic side effects. Site-specifically released chemotherapeutic drugs killed cancer cells surviving from rapid PDT damage via bystander effects. Recently, we developed such a paclitaxel (PTX) prodrug that targets folate receptors. The goals of this study were to determine the optimal treatment conditions, based on modeling, for maximum antitumor efficacy in terms of drug-light interval (DLI), and to investigate the impact of rapid PDT effects on the pharmacokinetic (PK) profiles of the released PTX. PK profiles of the prodrug were determined in key organs and a quantitative systems pharmacology (QSP) model was established to simulate PK profiles of the prodrug and the released PTX. Three illumination time points (DLI = 0.5, 9, or 48 h) were selected for the treatment based on the plasma/tumor ratio of the prodrug to achieve V-PDT (vascular targeted-PDT, 0.5 h), C-PDT (cellular targeted-PDT, 48 h), or both V- and C-PDT (9 h). The anti-tumor efficacy of the PTX prodrug was greatly influenced by the DLI. The 9 h DLI group, when both tumor and plasma concentrations of the prodrug were sufficient, showed the best antitumor effect. The clearance of the released PTX from tumor seemed to be largely impacted by blood circulation. Here, QSP modeling was an invaluable tool for rational optimization of the treatment conditions and for a deeper mechanistic understanding of the positive physiological effect of the combination therapy.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA
| | - Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA
| | - Bharathiraja Subramaniyan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA
| | - Moses Bio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - Jessica Kindrick
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA.
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73117, OK, USA.
| |
Collapse
|