1
|
Su XD, Liu Q, Cheng JT, Wang ZX, Chen XY. Near-Infrared-Light-Induced Iron(I) Dimer-Enabled Radical Cascade Reactions of Fluoroalkyl Bromides for the Synthesis of Ring-Fused Quinazolinones. Org Lett 2024; 26:7976-7980. [PMID: 39240022 DOI: 10.1021/acs.orglett.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
The use of an earth-abundant and inexpensive iron complex as a catalyst, coupled with near-infrared (NIR) light as the energy source, for radical reactions with alkyl halides has been far less developed. In this study, we report NIR light-mediated iron(I) dimer-catalyzed radical cascade reactions of fluoroalkyl bromides for the synthesis of ring-fused quinazolinones bearing a difluoromethyl group. In this process, the 3-bromo-1,10-phenanthroline ligand facilitates the reactivity of [CpFe(CO)2]2, thereby improving the efficiency of the reaction.
Collapse
Affiliation(s)
- Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Tang Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
2
|
Francés-Soriano L, Bellezza D, Ferrera-González J, González-Béjar M, Pérez-Prieto J. NIR-triggered photooxygenation of α-terpinene with upconversion nanohybrids. NANOSCALE ADVANCES 2024; 6:d4na00528g. [PMID: 39355838 PMCID: PMC11440474 DOI: 10.1039/d4na00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Upconversion nanohybrids (UCNHs) consisting of rose bengal (RB) and upconversion nanoparticles (UCNPs) are able to promote terpinene oxidation upon near-infrared irradiation. The photophysical events occurring upon NIR-irradiation of the UCNH correlate well with the synthetic protocol used to prepare the UCNHs (RB loading and aggregation). These results highlight the importance of the optimization of UCNH composition for the photocatalysis outcome.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Delia Bellezza
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| |
Collapse
|
3
|
Sellet N, Frey J, Cormier M, Goddard JP. Near-infrared photocatalysis with cyanines: synthesis, applications and perspectives. Chem Sci 2024; 15:8639-8650. [PMID: 38873079 PMCID: PMC11168079 DOI: 10.1039/d4sc00814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Cyanines are organic dyes bearing two aza-heterocycles linked by a polymethine chain. Excited states, fluorescence, redox activity, and energy transfer are interesting properties of cyanines which have been used by chemists. Moreover, they are easily accessible and highly tunable. For all these reasons, cyanines are often selected for applications like fluorescent probes, phototherapy and photovoltaics. However, considering cyanines as photocatalysts is a new field of investigation and has been sparsely reported in the literature. This field of research has been launched on the basis of near-infrared light photocatalysis. With a deeper NIR light penetration, the irradiation is compatible with biological tissues. Due to the longer wavelengths that are involved, the safety of the operator can be guaranteed. In this perspective review, the photophysical/redox properties of cyanines are reported as well as their preparations and applications in modern synthetic approaches. Finally, recent examples of cyanine-based NIR-photocatalysis are discussed including photopolymerization and organic synthesis.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Johanna Frey
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS Mulhouse 68100 France
| |
Collapse
|
4
|
Dhami S, Khatun MN, Sengupta C, Iyer PK, Pandey R. Substitution effects on the photoinduced excited state dynamics of perylenemonoimides in solution and thin films. Phys Chem Chem Phys 2024; 26:15600-15610. [PMID: 38757930 DOI: 10.1039/d4cp00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Perylene monoimide (PMI) derivatives are attracting significant attention due to their strong absorption in the visible range, thermal stability, and synthetic accessibility. These properties make them promising for application in various areas such as optoelectronic devices, photosensitizers, etc. In this work, the photophysical properties and excited state dynamics of four different PMI derivatives (PMIB, BrPMITB, PMITB, and APITB) were studied in solution and thin films utilizing steady-state and time-resolved spectroscopic techniques. Among the four PMI derivatives, APITB is designed as a donor-acceptor dyad, with thianthrene as a donor and PMI as an acceptor. The activation of the triplet state through the spin-orbit charge transfer intersystem crossing (SOCT-ISC) process in THF was observed upon substitution with the thianthrene group at the peri position of the PMI moiety. The SOCT-ISC process facilitates triplet formation in the APITB dyad within 423 ps. Meanwhile, other PMI derivatives showed fluorescence within the femtosecond timescale in THF. The PMI derivatives in thin films displayed different photo physical properties to those in THF. This discrepancy arises due to the effective intermolecular coupling between the PMI derivatives in thin films.
Collapse
Affiliation(s)
- Suman Dhami
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| | - Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Chaitrali Sengupta
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, 247667 Haridwar, Uttarakhand, India.
| |
Collapse
|
5
|
Li H, Wang C, Glaser F, Sinha N, Wenger OS. Metal-Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. J Am Chem Soc 2023; 145:11402-11414. [PMID: 37186558 PMCID: PMC10214436 DOI: 10.1021/jacs.3c02609] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 05/17/2023]
Abstract
Sensitized triplet-triplet annihilation upconversion is a promising strategy to use visible light for chemical reactions requiring the energy input of UV photons. This strategy avoids unsafe ultraviolet light sources and can mitigate photo-damage and provide access to reactions, for which filter effects hamper direct UV excitation. Here, we report a new approach to make blue-to-UV upconversion more amenable to photochemical applications. The tethering of a naphthalene unit to a cyclometalated iridium(III) complex yields a bichromophore with a high triplet energy (2.68 eV) and a naphthalene-based triplet reservoir featuring a lifetime of 72.1 μs, roughly a factor of 20 longer than the photoactive excited state of the parent iridium(III) complex. In combination with three different annihilators, consistently lower thresholds for the blue-to-UV upconversion to crossover from a quadratic into a linear excitation power dependence regime were observed with the bichromophore compared to the parent iridium(III) complex. The upconversion system composed of the bichromophore and the 2,5-diphenyloxazole annihilator is sufficiently robust under long-term blue irradiation to continuously provide a high-energy singlet-excited state that can drive chemical reactions normally requiring UV light. Both photoredox and energy transfer catalyses were feasible using this concept, including the reductive N-O bond cleavage of Weinreb amides, a C-C coupling reaction based on reductive aryl debromination, and two Paternò-Büchi [2 + 2] cycloaddition reactions. Our work seems relevant in the context of developing new strategies for driving energetically demanding photochemistry with low-energy input light.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Cui Wang
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Felix Glaser
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University
of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
6
|
Fatima S, Rizwan S. Synergetic Catalytic and Photocatalytic Performances of Tin-Doped BiFeO 3/Graphene Nanoplatelet Hybrids under Dark and Light Conditions. ACS OMEGA 2023; 8:3736-3744. [PMID: 36743001 PMCID: PMC9893474 DOI: 10.1021/acsomega.2c04971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Because of a rapidly growing need for water, it is essential to find new fast and reliable ways of water purification from organic pollutants. For removing organic azo dyes from water, various catalysts and photocatalysts have been designed to meet crucial water needs. In this study tin (Sn) doped bismuth ferrite (BFO) nanoparticles have been synthesized using the sol-gel technique. Further, BFSO/GNP nanohybrids were synthesized by mixing BFSO nanoparticles with graphene nanoplatelets (GNPs) via a simple and cost effective coprecipitation process. XRD and SEM showed that BFSO/GNP nanohybrids are well grown in crystal structure along with uniform and homogeneous morphology. XPS supported the elemental composition and interface bonding of both materials present inside the nanohybrids. DRS and catalytic activities showed that BFSO/GNP nanohybrids are both dark and light active species for performing dye degradation activities during water purification. The as-synthesized nanohybrids provided efficient dye removal from water even in the absence of light owing to the presence of defects and trap-state carriers (electrons) inside the graphene sheets. The optimized nanohybrid BFSO-15/GNP showed 100% dye removal in 60 min with 90% catalytic activity under dark. The recyclability test showed stable and repeatable performance of BFSO/GNP nanohybrids up to 10 cycles of catalytic activities.
Collapse
Affiliation(s)
- Sabeen Fatima
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad, 54000, Pakistan
| | - Syed Rizwan
- Physics
Characterization and Simulations Lab (PCSL), Department of Physics,
School of Natural Sciences (SNS), National
University of Sciences and Technology (NUST), Islamabad, 54000, Pakistan
| |
Collapse
|
7
|
Glaser F, Wenger OS. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem Sci 2022; 14:149-161. [PMID: 36605743 PMCID: PMC9769107 DOI: 10.1039/d2sc05229f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
By combining the energy input from two red photons, chemical reactions that would normally require blue or ultraviolet irradiation become accessible. Key advantages of this biphotonic excitation strategy are that red light usually penetrates deeper into complex reaction mixtures and causes less photo-damage than direct illumination in the blue or ultraviolet. Here, we demonstrate that the primary light-absorber of a dual photocatalytic system comprised of a transition metal-based photosensitizer and an organic co-catalyst can completely alter the reaction outcome. Photochemical reductions are achieved with a copper(i) complex in the presence of a sacrificial electron donor, whereas oxidative substrate activation occurs with an osmium(ii) photosensitizer. Based on time-resolved laser spectroscopy, this changeover in photochemical reactivity is due to different underlying biphotonic mechanisms. Following triplet energy transfer from the osmium(ii) photosensitizer to 9,10-dicyanoanthracene (DCA) and subsequent triplet-triplet annihilation upconversion, the fluorescent singlet excited state of DCA triggers oxidative substrate activation, which initiates the cis to trans isomerization of an olefin, a [2 + 2] cycloaddition, an aryl ether to ester rearrangement, and a Newman-Kwart rearrangement. This oxidative substrate activation stands in contrast to the reactivity with a copper(i) photosensitizer, where photoinduced electron transfer generates the DCA radical anion, which upon further excitation triggers reductive dehalogenations and detosylations. Our study provides the proof-of-concept for controlling the outcome of a red-light driven biphotonic reaction by altering the photosensitizer, and this seems relevant in the greater context of tailoring photochemical reactivities.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
8
|
Sellet N, Sebbat M, Elhabiri M, Cormier M, Goddard JP. Squaraines as near-infrared photocatalysts for organic reactions. Chem Commun (Camb) 2022; 58:13759-13762. [PMID: 36416727 DOI: 10.1039/d2cc04707a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herein, unprecedented uses of squaraine derivatives as new organic near-infrared photocatalysts are reported. These efficient molecular tools are able to promote oxidation and reduction for organic transformations through photocatalytic conditions. A mechanistic investigation is performed to distinguish between competitive Single Electron Transfer and Energy Transfer pathways.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Malik Sebbat
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Mourad Elhabiri
- Université de Strasbourg-CNRS-UHA UMR7042, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, Strasbourg F-67087, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, Mulhouse 68100, France.
| |
Collapse
|
9
|
Cheng X, Zhou J, Yue J, Wei Y, Gao C, Xie X, Huang L. Recent Development in Sensitizers for Lanthanide-Doped Upconversion Luminescence. Chem Rev 2022; 122:15998-16050. [PMID: 36194772 DOI: 10.1021/acs.chemrev.1c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.
Collapse
Affiliation(s)
- Xingwen Cheng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jie Zhou
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Jingyi Yue
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Yang Wei
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Chao Gao
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Xiaoji Xie
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China
| | - Ling Huang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing211816, China.,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi830046, China
| |
Collapse
|
10
|
Wang L, Sa R, Wei Y, Ma X, Lu C, Huang H, Fron E, Liu M, Wang W, Huang S, Hofkens J, Roeffaers MBJ, Wang Y, Wang J, Long J, Fu X, Yuan R. Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots. Angew Chem Int Ed Engl 2022; 61:e202204561. [DOI: 10.1002/anie.202204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lele Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Rongjian Sa
- Institute of Oceanography Ocean College Minjiang University Fuzhou 350108 P. R. China
| | - Yingcong Wei
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Xiongfeng Ma
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Chenggang Lu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Haowei Huang
- cMACS, Faculty of Bioscience Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Eduard Fron
- Department of Chemistry, Faculty of Sciences KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Ming Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Wei Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Shuping Huang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Johan Hofkens
- Department of Chemistry, Faculty of Sciences KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Maarten B. J. Roeffaers
- cMACS, Faculty of Bioscience Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Yan‐jie Wang
- School of Environment & Civil Engineering Dongguan University of Technology Dongguan 523808 (P. R. China)
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
11
|
Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation. Life (Basel) 2022; 12:life12091383. [PMID: 36143419 PMCID: PMC9502678 DOI: 10.3390/life12091383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.
Collapse
|
12
|
Panther LA, Guest DP, McGown A, Emerit H, Tareque RK, Jose A, Dadswell CM, Coles SJ, Tizzard GJ, González‐Méndez R, Goodall CAI, Bagley MC, Spencer J, Greenland BW. Solvent‐Free Synthesis of Core‐Functionalised Naphthalene Diimides by Using a Vibratory Ball Mill: Suzuki, Sonogashira and Buchwald–Hartwig Reactions. Chemistry 2022; 28:e202201444. [PMID: 35621283 PMCID: PMC9544761 DOI: 10.1002/chem.202201444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/07/2022]
Abstract
Solvent‐free synthesis by using a vibratory ball mill (VBM) offers the chance to access new chemical reactivity, whilst reducing solvent waste and minimising reaction times. Herein, we report the core functionalisation of N,N’‐bis(2‐ethylhexyl)‐2,6‐dibromo‐1,4,5,8‐naphthalenetetracarboxylic acid (Br2‐NDI) by using Suzuki, Sonogashira and Buchwald–Hartwig coupling reactions. The products of these reactions are important building blocks in many areas of organic electronics including organic light‐emitting diodes (OLEDs), organic field‐effect transistors (OFETs) and organic photovoltaic cells (OPVCs). The reactions proceed in as little as 1 h, use commercially available palladium sources (frequently Pd(OAc)2) and are tolerant to air and atmospheric moisture. Furthermore, the real‐world potential of this green VBM protocol is demonstrated by the double Suzuki coupling of a monobromo(NDI) residue to a bis(thiophene) pinacol ester. The resulting dimeric NDI species has been demonstrated to behave as an electron acceptor in functioning OPVCs.
Collapse
Affiliation(s)
- Lydia A. Panther
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Daniel P. Guest
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Andrew McGown
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Hugo Emerit
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Raysa Khan Tareque
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Arathy Jose
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Chris M. Dadswell
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Simon J. Coles
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Graham J. Tizzard
- UK National Crystallography Service Chemistry University of Southampton University Road Southampton SO17 1BJ UK
| | - Ramón González‐Méndez
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - Charles A. I. Goodall
- Faculty of Engineering & Science FES Engineering & Science School Operations University of Greenwich Old Royal Naval College Park Row London SE10 9LS UK
| | - Mark C. Bagley
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| | - John Spencer
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
- Sussex Drug Discovery Centre School of Life Sciences University of Sussex Falmer, Brighton BN1 9QG UK
| | - Barnaby W. Greenland
- Department of Chemistry School of Life Sciences University of Sussex Arundel Building 305 Falmer, Brighton BN1 9QJ UK
| |
Collapse
|
13
|
Wang L, Sa R, Wei Y, Ma X, Lu C, Huang H, Fron E, Liu M, Wang W, Huang S, Hofkens J, Roeffaers MBJ, Wang YJ, Wang J, Long J, Fu X, Yuan R. Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lele Wang
- Fuzhou University College of Chemistry CHINA
| | | | | | | | | | - Haowei Huang
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | - Eduard Fron
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | - Ming Liu
- Fuzhou University College of Chemistry CHINA
| | - Wei Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Johan Hofkens
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | | | - Yan-jie Wang
- Dongguan University of Technology School of Environment & Civil Engineering CHINA
| | - Junhui Wang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials CHINA
| | - Jinlin Long
- Fuzhou University College of Chemistry CHINA
| | - Xianzhi Fu
- Fuzhou University College of Chemistry CHINA
| | - Rusheng Yuan
- Fuzhou University College of Chemistry 350002 Fuzhou CHINA
| |
Collapse
|
14
|
Glaser F, Wenger OS. Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. JACS AU 2022; 2:1488-1503. [PMID: 35783177 PMCID: PMC9241018 DOI: 10.1021/jacsau.2c00265] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 05/11/2023]
Abstract
Photoredox catalysis typically relies on the use of single chromophores, whereas strategies, in which two different light absorbers are combined, are rare. In photosystems I and II of green plants, the two separate chromophores P680 and P700 both absorb light independently of one another, and then their excitation energy is combined in the so-called Z-scheme, to drive an overall reaction that is thermodynamically very demanding. Here, we adapt this concept to perform photoredox reactions on organic substrates with the combined energy input of two red photons instead of blue or UV light. Specifically, a CuI bis(α-diimine) complex in combination with in situ formed 9,10-dicyanoanthracenyl radical anion in the presence of excess diisopropylethylamine catalyzes ca. 50 dehalogenation and detosylation reactions. This dual photoredox approach seems useful because red light is less damaging and has a greater penetration depth than blue or UV radiation. UV-vis transient absorption spectroscopy reveals that the subtle change in solvent from acetonitrile to acetone induces a changeover in the reaction mechanism, involving either a dominant photoinduced electron transfer or a dominant triplet-triplet energy transfer pathway. Our study illustrates the mechanistic complexity in systems operating under multiphotonic excitation conditions, and it provides insights into how the competition between desirable and unwanted reaction steps can become more controllable.
Collapse
|
15
|
Pérez-Ruiz R. Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Top Curr Chem (Cham) 2022; 380:23. [PMID: 35445872 DOI: 10.1007/s41061-022-00378-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
Photon upconversion (UC) based on triplet-triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA-UC systems are found to be suitable photosensitizers for several chemical transformations.
Collapse
Affiliation(s)
- Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
16
|
Markushyna Y, Savateev A. Light as a tool in organic photocatalysis: multi‐photon excitation and chromoselective reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yevheniia Markushyna
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Department of Colloid Chemistry Am Mühlenberg 1 14476 Potsdam GERMANY
| | - Aleksandr Savateev
- Max Planck Institute of Colloids and Interfaces: Max-Planck-Institut fur Kolloid und Grenzflachenforschung Department of Colloid Chemistry GERMANY
| |
Collapse
|
17
|
Cesana PT, Li BX, Shepard SG, Ting SI, Hart SM, Olson CM, Martinez Alvarado JI, Son M, Steiman TJ, Castellano FN, Doyle AG, MacMillan DW, Schlau-Cohen GS. A biohybrid strategy for enabling photoredox catalysis with low-energy light. Chem 2022. [DOI: 10.1016/j.chempr.2021.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Katsurayama Y, Ikabata Y, Maeda H, Segi M, Nakai H, Furuyama T. Direct Near Infrared Light-Activatable Phthalocyanine Catalysts. Chemistry 2021; 28:e202103223. [PMID: 34734432 DOI: 10.1002/chem.202103223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The high penetration of near-infrared (NIR) light makes it effective for use in selective reactions under light-shielded conditions, such as in sealed reactors and deep tissues. Herein, we report the development of phthalocyanine catalysts directly activated by NIR light to transform small organic molecules. The desired photocatalytic properties were achieved in the phthalocyanines by introducing the appropriate peripheral substituents and central metal. These phthalocyanine photocatalysts promote cross-dehydrogenative-coupling (CDC) under irradiation with 810 nm NIR light. The choice of solvent is important, and a mixture of a reaction-accelerating (pyridine) and -decelerating (methanol) solvents was particularly effective. Moreover, we demonstrate photoreactions under visible-light-shielded conditions through the transmission of NIR light. A combined experimental and computational mechanistic analysis revealed that this NIR reaction does not involve a photoredox-type mechanism with electron transfer, but instead a singlet-oxygen-mediated mechanism with energy transfer.
Collapse
Affiliation(s)
- Yoshino Katsurayama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Information and Media Center, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Hajime Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masahito Segi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Department of Chemistry and Biochemistry School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura, Kyoto, 615-8520, Japan
| | - Taniyuki Furuyama
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.,Japan Science and Technology Agency (JST)-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
19
|
Hussain M, El-Zohry AM, Hou Y, Toffoletti A, Zhao J, Barbon A, Mohammed OF. Spin-Orbit Charge-Transfer Intersystem Crossing of Compact Naphthalenediimide-Carbazole Electron-Donor-Acceptor Triads. J Phys Chem B 2021; 125:10813-10831. [PMID: 34542290 DOI: 10.1021/acs.jpcb.1c06498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compact electron donor-acceptor triads based on carbazole (Cz) and naphthalenediimide (NDI) were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). By variation of the molecular conformation and electron-donating ability of the carbazole moieties, the electronic coupling between the two units was tuned, and as a result charge-transfer (CT) absorption bands with different magnitudes were observed (ε = 4000-18 000 M-1 cm-1). Interestingly, the triads with NDI attached at the 3-C position or with a phenyl spacer at the N position of the Cz moiety, thermally activated delayed fluorescence (TADF) was observed. Femtosecond transient absorption (fs-TA) spectroscopy indicated fast electron transfer (0.8-1.5 ps) from the Cz to NDI unit, followed by population of the triplet state (150-600 ps). Long-lived triplet states (up to τT = 45-50 μs) were observed for the triads. The solvent-polarity-dependent singlet-oxygen quantum yield (ΦΔ) is 0-26%. Time-resolved electron paramagnetic resonance (TREPR) spectral study of TADF molecules indicated the presence of the 3CT state for NDI-Cz-Ph (zero-field-splitting parameter D = 21 G) and an 3LE state for NDI-Ph-Cz (D = 586 G). The triads were used as triplet photosensitizers in triplet-triplet annihilation upconversion by excitation into the CT absorption band; the upconversion quantum yield was ΦUC = 8.2%, and there was a large anti-Stokes shift of 0.55 eV. Spatially confined photoexcitation is achieved with the upconversion using focusing laser beam excitation, and not the normally used collimated laser beam, i.e., the upconversion was only observed at the focal point of the laser beam. Photo-driven intermolecular electron transfer was demonstrated with reversible formation of the NDI-• radical anion in the presence of the sacrificial electron donor triethanolamine.
Collapse
Affiliation(s)
- Mushraf Hussain
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,NUIST Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, P. R. China
| | - Ahmed M El-Zohry
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Physics - AlbaNova Universitetscentrum, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yuqi Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Toffoletti
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Antonio Barbon
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Omar F Mohammed
- KAUST Solar Center, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
20
|
Wu Y, Chan SY, Xu J, Liu X. Multiphoton Upconversion Materials for Photocatalysis and Environmental Remediation. Chem Asian J 2021; 16:2596-2609. [PMID: 34403201 DOI: 10.1002/asia.202100751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Indexed: 11/07/2022]
Abstract
Solar-driven photocatalysis holds great potential for energy conversion, environmental remediation, and sustainable chemistry. However, practical applications of conventional photocatalytic systems have been constrained by their insufficient ability to harvest solar radiation in the infrared spectrum. Lanthanide-doped upconversion materials possess high photostability, tunable absorption, and the ability to convert low-energy infrared radiation into high-energy emission, making them attractive for infrared-driven photocatalysis. This review highlights essential principles for rational design of efficient photocatalysts. Particular emphasis is placed on current state-of-the-arts that offer enhanced upconversion luminescence efficiency. We also summarize recent advances in lanthanide-doped upconversion materials for photocatalysis. We conclude with new challenges and prospects for future developments of infrared-driven photocatalysts.
Collapse
Affiliation(s)
- Yiming Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore
| | - Jiahui Xu
- Department of Chemistry, National University of Singapore, Institution 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaogang Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, 138634, Singapore.,Department of Chemistry, National University of Singapore, Institution 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Glaser F, Kerzig C, Wenger OS. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chem Sci 2021; 12:9922-9933. [PMID: 34349964 PMCID: PMC8317647 DOI: 10.1039/d1sc02085d] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Sensitization-initiated electron transfer (SenI-ET) describes a recently discovered photoredox strategy that relies on two consecutive light absorption events, triggering a sequence of energy and electron transfer steps. The cumulative energy input from two visible photons gives access to thermodynamically demanding reactions, which would be unattainable by single excitation with visible light. For this reason, SenI-ET has become a very useful strategy in synthetic photochemistry, but the mechanism has been difficult to clarify due to its complexity. We demonstrate that SenI-ET can operate via sensitized triplet-triplet annihilation upconversion, and we provide the first direct spectroscopic evidence for the catalytically active species. In our system comprised of fac-[Ir(ppy)3] as a light absorber, 2,7-di-tert-butylpyrene as an annihilator, and N,N-dimethylaniline as a sacrificial reductant, all photochemical reaction steps proceed with remarkable rates and efficiencies, and this system is furthermore suitable for photocatalytic aryl dehalogenations, pinacol couplings and detosylation reactions. The insights presented here are relevant for the further rational development of photoredox processes based on multi-photon excitation, and they could have important implications in the greater contexts of synthetic photochemistry and solar energy conversion.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
22
|
Rizzo C, Marullo S, Billeci F, D'Anna F. Catalysis in Supramolecular Systems: the Case of Gel Phases. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Carla Rizzo
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Salvatore Marullo
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Floriana Billeci
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| | - Francesca D'Anna
- Università degli Studi di Palermo Dipartimento STEBICEF Viale delle Scienze, Ed. 17 90128 Palermo Italy
| |
Collapse
|
23
|
Obah Kosso AR, Sellet N, Baralle A, Cormier M, Goddard JP. Cyanine-based near infra-red organic photoredox catalysis. Chem Sci 2021; 12:6964-6968. [PMID: 34123323 PMCID: PMC8153078 DOI: 10.1039/d1sc00998b] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Direct metal-free near infra-red photoredox catalysis is applied to organic oxidation, photosensitization and reduction, involving cyanines as photocatalysts. This photocatalyst is competitive with conventional reactions catalyzed under visible light. Kinetic and quenching experiments are also reported. Interestingly, these systems are compatible with water media, opening perspective for various applications.
Collapse
Affiliation(s)
- Anne Roly Obah Kosso
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS 68100 Mulhouse France
| | - Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS 68100 Mulhouse France
| | - Alexandre Baralle
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS 68100 Mulhouse France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS 68100 Mulhouse France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS 68100 Mulhouse France
| |
Collapse
|
24
|
Du Q, Wu X, Bi W, Xing B, Yeow EKL. Increasing antibiotic activity by rapid bioorthogonal conjugation of drug to resistant bacteria using an upconverted light-activated photocatalyst. J Mater Chem B 2021; 9:3136-3142. [PMID: 33656045 DOI: 10.1039/d0tb02568b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic vancomycin (Van) is often used as the drug of last resort to treat methicillin resistant Staphylococcus aureus. Due to the emergence of Van-resistant microbes, it is necessary to continuously design strategies to increase the efficacy of Van against resistant cells. In this study, an efficient method of bio-conjugating Van to bacteria is proposed using near-infrared (NIR)-light activation. A Nd3+-sensitized upconversion nanocrystal (UCNC) decorated with toluidine blue O (TB) on its surface undergoes upconverted energy transfer from the UCNC to TB when excited by 808 nm light. The photoexcited TB then catalyses the conversion of the dihydrotetrazine (dHTz) moiety in a Van-dHTz conjugate system to tetrazine which undergoes an efficient inverse electron demand Diels-Alder reaction with prior attached norbornene molecules on bacterial cell walls. The enhanced affinity of Van to bacteria by covalent bonding improves the activity of the drug against drug-resistant Enterococci, and the MIC is reduced by 6- to 7-fold as compared to neat Van. We demonstrate that the mode of action is due to increased inhibition of peptidoglycan cell wall biosynthesis. The findings in this study demonstrate that on-demand NIR-light activated bioorthogonal conjugation of Van to microbes is a viable alternative treatment in combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Quanchao Du
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | | | | | | | | |
Collapse
|
25
|
Sellet N, Cormier M, Goddard JP. The dark side of photocatalysis: near-infrared photoredox catalysis for organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo01476e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Near-Infrared photoredox catalysis is now consider as the next evolution of this field.
Collapse
Affiliation(s)
- Nicolas Sellet
- Laboratoire d'Innovation Moléculaire et Application (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100 Mulhouse, France
| | - Morgan Cormier
- Laboratoire d'Innovation Moléculaire et Application (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100 Mulhouse, France
| | - Jean-Philippe Goddard
- Laboratoire d'Innovation Moléculaire et Application (LIMA), UMR 7042, Université de Haute-Alsace (UHA), Université de Strasbourg, CNRS, 68100 Mulhouse, France
| |
Collapse
|
26
|
Ravetz B, Tay NES, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS CENTRAL SCIENCE 2020; 6:2053-2059. [PMID: 33274281 PMCID: PMC7706074 DOI: 10.1021/acscentsci.0c00948] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 05/05/2023]
Abstract
Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.
Collapse
Affiliation(s)
- Benjamin
D. Ravetz
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas E. S. Tay
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L. Joe
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
- E-mail:
| | - Melda Sezen-Edmonds
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael A. Schmidt
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Janey
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- E-mail:
| |
Collapse
|
27
|
Gianetti T, Mei L. Helical Carbenium Ion-Based Organic Photoredox Catalyst: A Versatile and Sustainable Option in Red-Light-Induced Reactions. Synlett 2020. [DOI: 10.1055/s-0040-1705942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractThe development of a sustainable catalytic system for red-light-induced photocatalysis is presented. The catalytic system consists of a helical carbenium ion-based organic photoredox catalyst (PC) that is capable of using low-energy red light (λmax = 640 nm) for both photooxidations and photoreductions. Its successful applications in the aerobic oxidative hydroxylation of arylboronic acids and in the oxidation of benzylic C(sp3)–H bonds (reductive quenching), as well as in dual transition-metal/organocatalyzed C–H arylations and intermolecular atom-transfer radical additions (oxidative quenching) provide further support for its role as a versatile and efficient organic PC.1 Introduction2 Red-Light-Induced Photocatalysis3 Properties of N,N′-Dipropyl-1,13-dimethoxyquinacridinium Tetrafluoroborate4 Two Proposed Representative Catalytic Cycles of [
n
Pr-DMQA+][BF4
–]5 Applications of [
n
Pr-DMQA+][BF4
–] in Red-Light-Induced Photocatalysis6 Conclusion
Collapse
Affiliation(s)
- Thomas Gianetti
- Department of Chemistry and Biochemistry, University of Arizona
| | | |
Collapse
|
28
|
Khan K, Tareen AK, Aslam M, Sagar RUR, Zhang B, Huang W, Mahmood A, Mahmood N, Khan K, Zhang H, Guo Z. Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. NANO-MICRO LETTERS 2020; 12:167. [PMID: 34138161 PMCID: PMC7770787 DOI: 10.1007/s40820-020-00504-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 05/03/2023]
Abstract
The successful photo-catalyst library gives significant information on feature that affects photo-catalytic performance and proposes new materials. Competency is considerably significant to form multi-functional photo-catalysts with flexible characteristics. Since recently, two-dimensional materials (2DMs) gained much attention from researchers, due to their unique thickness-dependent uses, mainly for photo-catalytic, outstanding chemical and physical properties. Photo-catalytic water splitting and hydrogen (H2) evolution by plentiful compounds as electron (e-) donors is estimated to participate in constructing clean method for solar H2-formation. Heterogeneous photo-catalysis received much research attention caused by their applications to tackle numerous energy and environmental issues. This broad review explains progress regarding 2DMs, significance in structure, and catalytic results. We will discuss in detail current progresses of approaches for adjusting 2DMs-based photo-catalysts to assess their photo-activity including doping, hetero-structure scheme, and functional formation assembly. Suggested plans, e.g., doping and sensitization of semiconducting 2DMs, increasing electrical conductance, improving catalytic active sites, strengthening interface coupling in semiconductors (SCs) 2DMs, forming nano-structures, building multi-junction nano-composites, increasing photo-stability of SCs, and using combined results of adapted approaches, are summed up. Hence, to further improve 2DMs photo-catalyst properties, hetero-structure design-based 2DMs' photo-catalyst basic mechanism is also reviewed.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Aslam
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- Government Degree College Paharpur, Gomel University, Dera Ismail Khan, K.P.K, Islamic Republic of Pakistan
| | - Rizwan Ur Rehman Sagar
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Jiangxi, 341000, People's Republic of China
| | - Bin Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Asif Mahmood
- School of Chemical and Bio-Molecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nasir Mahmood
- School of Engineering, The Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Kishwar Khan
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
Affiliation(s)
- Michele Melchionna
- Chemistry Department, INSTM and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Chemistry Department, INSTM and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
30
|
Glaser F, Kerzig C, Wenger OS. Multiphotonen‐Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915762] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Felix Glaser
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Christoph Kerzig
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Oliver S. Wenger
- Departement Chemie Universität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
31
|
Glaser F, Kerzig C, Wenger OS. Multi-Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angew Chem Int Ed Engl 2020; 59:10266-10284. [PMID: 31945241 DOI: 10.1002/anie.201915762] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/16/2020] [Indexed: 01/28/2023]
Abstract
The energy of visible photons and the accessible redox potentials of common photocatalysts set thermodynamic limits to photochemical reactions that can be driven by traditional visible-light irradiation. UV excitation can be damaging and induce side reactions, hence visible or even near-IR light is usually preferable. Thus, photochemistry currently faces two divergent challenges, namely the desire to perform ever more thermodynamically demanding reactions with increasingly lower photon energies. The pooling of two low-energy photons can address both challenges simultaneously, and whilst multi-photon spectroscopy is well established, synthetic photoredox chemistry has only recently started to exploit multi-photon processes on the preparative scale. Herein, we have a critical look at currently developed reactions and mechanistic concepts, discuss pertinent experimental methods, and provide an outlook into possible future developments of this rapidly emerging area.
Collapse
Affiliation(s)
- Felix Glaser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
32
|
Affiliation(s)
- Sebastian Gisbertz
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Chemistry and BiochemistryFreie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Bartholomäus Pieber
- Department of Biomolecular SystemsMax Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
33
|
Busch J, Knoll DM, Zippel C, Bräse S, Bizzarri C. Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Trans 2019; 48:15338-15357. [PMID: 31573576 DOI: 10.1039/c9dt02094b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this perspective, we review those stereoselective photocatalytic reactions that use synergy between photoredox catalysts and transition metal catalysts. In particular, we highlight the orchestrated interaction between two and more metals which not only enhance the turnover numbers, but also lead to increased selectivities. Aspects of green chemistry and sustainable developments are included. In this review, C-C, C-O, C-N and C-S forming reactions are discussed and a perspective on future developments is given.
Collapse
Affiliation(s)
- Jasmin Busch
- Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Daniel M Knoll
- Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Christoph Zippel
- Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - Stefan Bräse
- Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. and Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
34
|
A tan for molecules: photocatalyzed synthesis with direct sunlight. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00826-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|